| Step |
Hyp |
Ref |
Expression |
| 1 |
|
domeng |
|- ( A e. Fin -> ( B ~<_ A <-> E. x ( B ~~ x /\ x C_ A ) ) ) |
| 2 |
|
ssfi |
|- ( ( A e. Fin /\ x C_ A ) -> x e. Fin ) |
| 3 |
2
|
adantrl |
|- ( ( A e. Fin /\ ( B ~~ x /\ x C_ A ) ) -> x e. Fin ) |
| 4 |
|
enfii |
|- ( ( x e. Fin /\ B ~~ x ) -> B e. Fin ) |
| 5 |
4
|
adantrr |
|- ( ( x e. Fin /\ ( B ~~ x /\ x C_ A ) ) -> B e. Fin ) |
| 6 |
3 5
|
sylancom |
|- ( ( A e. Fin /\ ( B ~~ x /\ x C_ A ) ) -> B e. Fin ) |
| 7 |
6
|
ex |
|- ( A e. Fin -> ( ( B ~~ x /\ x C_ A ) -> B e. Fin ) ) |
| 8 |
7
|
exlimdv |
|- ( A e. Fin -> ( E. x ( B ~~ x /\ x C_ A ) -> B e. Fin ) ) |
| 9 |
1 8
|
sylbid |
|- ( A e. Fin -> ( B ~<_ A -> B e. Fin ) ) |
| 10 |
9
|
imp |
|- ( ( A e. Fin /\ B ~<_ A ) -> B e. Fin ) |