Step |
Hyp |
Ref |
Expression |
1 |
|
dominf.1 |
|- A e. _V |
2 |
|
neeq1 |
|- ( x = A -> ( x =/= (/) <-> A =/= (/) ) ) |
3 |
|
id |
|- ( x = A -> x = A ) |
4 |
|
unieq |
|- ( x = A -> U. x = U. A ) |
5 |
3 4
|
sseq12d |
|- ( x = A -> ( x C_ U. x <-> A C_ U. A ) ) |
6 |
2 5
|
anbi12d |
|- ( x = A -> ( ( x =/= (/) /\ x C_ U. x ) <-> ( A =/= (/) /\ A C_ U. A ) ) ) |
7 |
|
breq2 |
|- ( x = A -> ( _om ~<_ x <-> _om ~<_ A ) ) |
8 |
6 7
|
imbi12d |
|- ( x = A -> ( ( ( x =/= (/) /\ x C_ U. x ) -> _om ~<_ x ) <-> ( ( A =/= (/) /\ A C_ U. A ) -> _om ~<_ A ) ) ) |
9 |
|
eqid |
|- ( y e. _V |-> { w e. x | ( w i^i x ) C_ y } ) = ( y e. _V |-> { w e. x | ( w i^i x ) C_ y } ) |
10 |
|
eqid |
|- ( rec ( ( y e. _V |-> { w e. x | ( w i^i x ) C_ y } ) , (/) ) |` _om ) = ( rec ( ( y e. _V |-> { w e. x | ( w i^i x ) C_ y } ) , (/) ) |` _om ) |
11 |
9 10 1 1
|
inf3lem6 |
|- ( ( x =/= (/) /\ x C_ U. x ) -> ( rec ( ( y e. _V |-> { w e. x | ( w i^i x ) C_ y } ) , (/) ) |` _om ) : _om -1-1-> ~P x ) |
12 |
|
vpwex |
|- ~P x e. _V |
13 |
12
|
f1dom |
|- ( ( rec ( ( y e. _V |-> { w e. x | ( w i^i x ) C_ y } ) , (/) ) |` _om ) : _om -1-1-> ~P x -> _om ~<_ ~P x ) |
14 |
|
pwfi |
|- ( x e. Fin <-> ~P x e. Fin ) |
15 |
14
|
biimpi |
|- ( x e. Fin -> ~P x e. Fin ) |
16 |
|
isfinite |
|- ( x e. Fin <-> x ~< _om ) |
17 |
|
isfinite |
|- ( ~P x e. Fin <-> ~P x ~< _om ) |
18 |
15 16 17
|
3imtr3i |
|- ( x ~< _om -> ~P x ~< _om ) |
19 |
18
|
con3i |
|- ( -. ~P x ~< _om -> -. x ~< _om ) |
20 |
12
|
domtriom |
|- ( _om ~<_ ~P x <-> -. ~P x ~< _om ) |
21 |
|
vex |
|- x e. _V |
22 |
21
|
domtriom |
|- ( _om ~<_ x <-> -. x ~< _om ) |
23 |
19 20 22
|
3imtr4i |
|- ( _om ~<_ ~P x -> _om ~<_ x ) |
24 |
11 13 23
|
3syl |
|- ( ( x =/= (/) /\ x C_ U. x ) -> _om ~<_ x ) |
25 |
1 8 24
|
vtocl |
|- ( ( A =/= (/) /\ A C_ U. A ) -> _om ~<_ A ) |