Step |
Hyp |
Ref |
Expression |
1 |
|
df-ne |
|- ( ( chr ` R ) =/= 0 <-> -. ( chr ` R ) = 0 ) |
2 |
|
domnring |
|- ( R e. Domn -> R e. Ring ) |
3 |
|
eqid |
|- ( chr ` R ) = ( chr ` R ) |
4 |
3
|
chrcl |
|- ( R e. Ring -> ( chr ` R ) e. NN0 ) |
5 |
2 4
|
syl |
|- ( R e. Domn -> ( chr ` R ) e. NN0 ) |
6 |
5
|
adantr |
|- ( ( R e. Domn /\ ( chr ` R ) =/= 0 ) -> ( chr ` R ) e. NN0 ) |
7 |
|
simpr |
|- ( ( R e. Domn /\ ( chr ` R ) =/= 0 ) -> ( chr ` R ) =/= 0 ) |
8 |
|
eldifsn |
|- ( ( chr ` R ) e. ( NN0 \ { 0 } ) <-> ( ( chr ` R ) e. NN0 /\ ( chr ` R ) =/= 0 ) ) |
9 |
6 7 8
|
sylanbrc |
|- ( ( R e. Domn /\ ( chr ` R ) =/= 0 ) -> ( chr ` R ) e. ( NN0 \ { 0 } ) ) |
10 |
|
dfn2 |
|- NN = ( NN0 \ { 0 } ) |
11 |
9 10
|
eleqtrrdi |
|- ( ( R e. Domn /\ ( chr ` R ) =/= 0 ) -> ( chr ` R ) e. NN ) |
12 |
|
domnnzr |
|- ( R e. Domn -> R e. NzRing ) |
13 |
|
nzrring |
|- ( R e. NzRing -> R e. Ring ) |
14 |
|
chrnzr |
|- ( R e. Ring -> ( R e. NzRing <-> ( chr ` R ) =/= 1 ) ) |
15 |
13 14
|
syl |
|- ( R e. NzRing -> ( R e. NzRing <-> ( chr ` R ) =/= 1 ) ) |
16 |
15
|
ibi |
|- ( R e. NzRing -> ( chr ` R ) =/= 1 ) |
17 |
12 16
|
syl |
|- ( R e. Domn -> ( chr ` R ) =/= 1 ) |
18 |
17
|
adantr |
|- ( ( R e. Domn /\ ( chr ` R ) =/= 0 ) -> ( chr ` R ) =/= 1 ) |
19 |
|
eluz2b3 |
|- ( ( chr ` R ) e. ( ZZ>= ` 2 ) <-> ( ( chr ` R ) e. NN /\ ( chr ` R ) =/= 1 ) ) |
20 |
11 18 19
|
sylanbrc |
|- ( ( R e. Domn /\ ( chr ` R ) =/= 0 ) -> ( chr ` R ) e. ( ZZ>= ` 2 ) ) |
21 |
2
|
ad2antrr |
|- ( ( ( R e. Domn /\ ( chr ` R ) =/= 0 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> R e. Ring ) |
22 |
|
eqid |
|- ( ZRHom ` R ) = ( ZRHom ` R ) |
23 |
22
|
zrhrhm |
|- ( R e. Ring -> ( ZRHom ` R ) e. ( ZZring RingHom R ) ) |
24 |
21 23
|
syl |
|- ( ( ( R e. Domn /\ ( chr ` R ) =/= 0 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ZRHom ` R ) e. ( ZZring RingHom R ) ) |
25 |
|
simprl |
|- ( ( ( R e. Domn /\ ( chr ` R ) =/= 0 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> x e. ZZ ) |
26 |
|
simprr |
|- ( ( ( R e. Domn /\ ( chr ` R ) =/= 0 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> y e. ZZ ) |
27 |
|
zringbas |
|- ZZ = ( Base ` ZZring ) |
28 |
|
zringmulr |
|- x. = ( .r ` ZZring ) |
29 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
30 |
27 28 29
|
rhmmul |
|- ( ( ( ZRHom ` R ) e. ( ZZring RingHom R ) /\ x e. ZZ /\ y e. ZZ ) -> ( ( ZRHom ` R ) ` ( x x. y ) ) = ( ( ( ZRHom ` R ) ` x ) ( .r ` R ) ( ( ZRHom ` R ) ` y ) ) ) |
31 |
24 25 26 30
|
syl3anc |
|- ( ( ( R e. Domn /\ ( chr ` R ) =/= 0 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( ZRHom ` R ) ` ( x x. y ) ) = ( ( ( ZRHom ` R ) ` x ) ( .r ` R ) ( ( ZRHom ` R ) ` y ) ) ) |
32 |
31
|
eqeq1d |
|- ( ( ( R e. Domn /\ ( chr ` R ) =/= 0 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( ( ZRHom ` R ) ` ( x x. y ) ) = ( 0g ` R ) <-> ( ( ( ZRHom ` R ) ` x ) ( .r ` R ) ( ( ZRHom ` R ) ` y ) ) = ( 0g ` R ) ) ) |
33 |
|
simpll |
|- ( ( ( R e. Domn /\ ( chr ` R ) =/= 0 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> R e. Domn ) |
34 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
35 |
27 34
|
rhmf |
|- ( ( ZRHom ` R ) e. ( ZZring RingHom R ) -> ( ZRHom ` R ) : ZZ --> ( Base ` R ) ) |
36 |
24 35
|
syl |
|- ( ( ( R e. Domn /\ ( chr ` R ) =/= 0 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ZRHom ` R ) : ZZ --> ( Base ` R ) ) |
37 |
36 25
|
ffvelrnd |
|- ( ( ( R e. Domn /\ ( chr ` R ) =/= 0 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( ZRHom ` R ) ` x ) e. ( Base ` R ) ) |
38 |
36 26
|
ffvelrnd |
|- ( ( ( R e. Domn /\ ( chr ` R ) =/= 0 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( ZRHom ` R ) ` y ) e. ( Base ` R ) ) |
39 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
40 |
34 29 39
|
domneq0 |
|- ( ( R e. Domn /\ ( ( ZRHom ` R ) ` x ) e. ( Base ` R ) /\ ( ( ZRHom ` R ) ` y ) e. ( Base ` R ) ) -> ( ( ( ( ZRHom ` R ) ` x ) ( .r ` R ) ( ( ZRHom ` R ) ` y ) ) = ( 0g ` R ) <-> ( ( ( ZRHom ` R ) ` x ) = ( 0g ` R ) \/ ( ( ZRHom ` R ) ` y ) = ( 0g ` R ) ) ) ) |
41 |
33 37 38 40
|
syl3anc |
|- ( ( ( R e. Domn /\ ( chr ` R ) =/= 0 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( ( ( ZRHom ` R ) ` x ) ( .r ` R ) ( ( ZRHom ` R ) ` y ) ) = ( 0g ` R ) <-> ( ( ( ZRHom ` R ) ` x ) = ( 0g ` R ) \/ ( ( ZRHom ` R ) ` y ) = ( 0g ` R ) ) ) ) |
42 |
32 41
|
bitrd |
|- ( ( ( R e. Domn /\ ( chr ` R ) =/= 0 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( ( ZRHom ` R ) ` ( x x. y ) ) = ( 0g ` R ) <-> ( ( ( ZRHom ` R ) ` x ) = ( 0g ` R ) \/ ( ( ZRHom ` R ) ` y ) = ( 0g ` R ) ) ) ) |
43 |
42
|
biimpd |
|- ( ( ( R e. Domn /\ ( chr ` R ) =/= 0 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( ( ZRHom ` R ) ` ( x x. y ) ) = ( 0g ` R ) -> ( ( ( ZRHom ` R ) ` x ) = ( 0g ` R ) \/ ( ( ZRHom ` R ) ` y ) = ( 0g ` R ) ) ) ) |
44 |
|
zmulcl |
|- ( ( x e. ZZ /\ y e. ZZ ) -> ( x x. y ) e. ZZ ) |
45 |
44
|
adantl |
|- ( ( ( R e. Domn /\ ( chr ` R ) =/= 0 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( x x. y ) e. ZZ ) |
46 |
3 22 39
|
chrdvds |
|- ( ( R e. Ring /\ ( x x. y ) e. ZZ ) -> ( ( chr ` R ) || ( x x. y ) <-> ( ( ZRHom ` R ) ` ( x x. y ) ) = ( 0g ` R ) ) ) |
47 |
21 45 46
|
syl2anc |
|- ( ( ( R e. Domn /\ ( chr ` R ) =/= 0 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( chr ` R ) || ( x x. y ) <-> ( ( ZRHom ` R ) ` ( x x. y ) ) = ( 0g ` R ) ) ) |
48 |
3 22 39
|
chrdvds |
|- ( ( R e. Ring /\ x e. ZZ ) -> ( ( chr ` R ) || x <-> ( ( ZRHom ` R ) ` x ) = ( 0g ` R ) ) ) |
49 |
21 25 48
|
syl2anc |
|- ( ( ( R e. Domn /\ ( chr ` R ) =/= 0 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( chr ` R ) || x <-> ( ( ZRHom ` R ) ` x ) = ( 0g ` R ) ) ) |
50 |
3 22 39
|
chrdvds |
|- ( ( R e. Ring /\ y e. ZZ ) -> ( ( chr ` R ) || y <-> ( ( ZRHom ` R ) ` y ) = ( 0g ` R ) ) ) |
51 |
21 26 50
|
syl2anc |
|- ( ( ( R e. Domn /\ ( chr ` R ) =/= 0 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( chr ` R ) || y <-> ( ( ZRHom ` R ) ` y ) = ( 0g ` R ) ) ) |
52 |
49 51
|
orbi12d |
|- ( ( ( R e. Domn /\ ( chr ` R ) =/= 0 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( ( chr ` R ) || x \/ ( chr ` R ) || y ) <-> ( ( ( ZRHom ` R ) ` x ) = ( 0g ` R ) \/ ( ( ZRHom ` R ) ` y ) = ( 0g ` R ) ) ) ) |
53 |
43 47 52
|
3imtr4d |
|- ( ( ( R e. Domn /\ ( chr ` R ) =/= 0 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( chr ` R ) || ( x x. y ) -> ( ( chr ` R ) || x \/ ( chr ` R ) || y ) ) ) |
54 |
53
|
ralrimivva |
|- ( ( R e. Domn /\ ( chr ` R ) =/= 0 ) -> A. x e. ZZ A. y e. ZZ ( ( chr ` R ) || ( x x. y ) -> ( ( chr ` R ) || x \/ ( chr ` R ) || y ) ) ) |
55 |
|
isprm6 |
|- ( ( chr ` R ) e. Prime <-> ( ( chr ` R ) e. ( ZZ>= ` 2 ) /\ A. x e. ZZ A. y e. ZZ ( ( chr ` R ) || ( x x. y ) -> ( ( chr ` R ) || x \/ ( chr ` R ) || y ) ) ) ) |
56 |
20 54 55
|
sylanbrc |
|- ( ( R e. Domn /\ ( chr ` R ) =/= 0 ) -> ( chr ` R ) e. Prime ) |
57 |
56
|
ex |
|- ( R e. Domn -> ( ( chr ` R ) =/= 0 -> ( chr ` R ) e. Prime ) ) |
58 |
1 57
|
syl5bir |
|- ( R e. Domn -> ( -. ( chr ` R ) = 0 -> ( chr ` R ) e. Prime ) ) |
59 |
58
|
orrd |
|- ( R e. Domn -> ( ( chr ` R ) = 0 \/ ( chr ` R ) e. Prime ) ) |