Step |
Hyp |
Ref |
Expression |
1 |
|
domneq0.b |
|- B = ( Base ` R ) |
2 |
|
domneq0.t |
|- .x. = ( .r ` R ) |
3 |
|
domneq0.z |
|- .0. = ( 0g ` R ) |
4 |
|
3simpc |
|- ( ( R e. Domn /\ X e. B /\ Y e. B ) -> ( X e. B /\ Y e. B ) ) |
5 |
1 2 3
|
isdomn |
|- ( R e. Domn <-> ( R e. NzRing /\ A. x e. B A. y e. B ( ( x .x. y ) = .0. -> ( x = .0. \/ y = .0. ) ) ) ) |
6 |
5
|
simprbi |
|- ( R e. Domn -> A. x e. B A. y e. B ( ( x .x. y ) = .0. -> ( x = .0. \/ y = .0. ) ) ) |
7 |
6
|
3ad2ant1 |
|- ( ( R e. Domn /\ X e. B /\ Y e. B ) -> A. x e. B A. y e. B ( ( x .x. y ) = .0. -> ( x = .0. \/ y = .0. ) ) ) |
8 |
|
oveq1 |
|- ( x = X -> ( x .x. y ) = ( X .x. y ) ) |
9 |
8
|
eqeq1d |
|- ( x = X -> ( ( x .x. y ) = .0. <-> ( X .x. y ) = .0. ) ) |
10 |
|
eqeq1 |
|- ( x = X -> ( x = .0. <-> X = .0. ) ) |
11 |
10
|
orbi1d |
|- ( x = X -> ( ( x = .0. \/ y = .0. ) <-> ( X = .0. \/ y = .0. ) ) ) |
12 |
9 11
|
imbi12d |
|- ( x = X -> ( ( ( x .x. y ) = .0. -> ( x = .0. \/ y = .0. ) ) <-> ( ( X .x. y ) = .0. -> ( X = .0. \/ y = .0. ) ) ) ) |
13 |
|
oveq2 |
|- ( y = Y -> ( X .x. y ) = ( X .x. Y ) ) |
14 |
13
|
eqeq1d |
|- ( y = Y -> ( ( X .x. y ) = .0. <-> ( X .x. Y ) = .0. ) ) |
15 |
|
eqeq1 |
|- ( y = Y -> ( y = .0. <-> Y = .0. ) ) |
16 |
15
|
orbi2d |
|- ( y = Y -> ( ( X = .0. \/ y = .0. ) <-> ( X = .0. \/ Y = .0. ) ) ) |
17 |
14 16
|
imbi12d |
|- ( y = Y -> ( ( ( X .x. y ) = .0. -> ( X = .0. \/ y = .0. ) ) <-> ( ( X .x. Y ) = .0. -> ( X = .0. \/ Y = .0. ) ) ) ) |
18 |
12 17
|
rspc2va |
|- ( ( ( X e. B /\ Y e. B ) /\ A. x e. B A. y e. B ( ( x .x. y ) = .0. -> ( x = .0. \/ y = .0. ) ) ) -> ( ( X .x. Y ) = .0. -> ( X = .0. \/ Y = .0. ) ) ) |
19 |
4 7 18
|
syl2anc |
|- ( ( R e. Domn /\ X e. B /\ Y e. B ) -> ( ( X .x. Y ) = .0. -> ( X = .0. \/ Y = .0. ) ) ) |
20 |
|
domnring |
|- ( R e. Domn -> R e. Ring ) |
21 |
20
|
3ad2ant1 |
|- ( ( R e. Domn /\ X e. B /\ Y e. B ) -> R e. Ring ) |
22 |
|
simp3 |
|- ( ( R e. Domn /\ X e. B /\ Y e. B ) -> Y e. B ) |
23 |
1 2 3
|
ringlz |
|- ( ( R e. Ring /\ Y e. B ) -> ( .0. .x. Y ) = .0. ) |
24 |
21 22 23
|
syl2anc |
|- ( ( R e. Domn /\ X e. B /\ Y e. B ) -> ( .0. .x. Y ) = .0. ) |
25 |
|
oveq1 |
|- ( X = .0. -> ( X .x. Y ) = ( .0. .x. Y ) ) |
26 |
25
|
eqeq1d |
|- ( X = .0. -> ( ( X .x. Y ) = .0. <-> ( .0. .x. Y ) = .0. ) ) |
27 |
24 26
|
syl5ibrcom |
|- ( ( R e. Domn /\ X e. B /\ Y e. B ) -> ( X = .0. -> ( X .x. Y ) = .0. ) ) |
28 |
|
simp2 |
|- ( ( R e. Domn /\ X e. B /\ Y e. B ) -> X e. B ) |
29 |
1 2 3
|
ringrz |
|- ( ( R e. Ring /\ X e. B ) -> ( X .x. .0. ) = .0. ) |
30 |
21 28 29
|
syl2anc |
|- ( ( R e. Domn /\ X e. B /\ Y e. B ) -> ( X .x. .0. ) = .0. ) |
31 |
|
oveq2 |
|- ( Y = .0. -> ( X .x. Y ) = ( X .x. .0. ) ) |
32 |
31
|
eqeq1d |
|- ( Y = .0. -> ( ( X .x. Y ) = .0. <-> ( X .x. .0. ) = .0. ) ) |
33 |
30 32
|
syl5ibrcom |
|- ( ( R e. Domn /\ X e. B /\ Y e. B ) -> ( Y = .0. -> ( X .x. Y ) = .0. ) ) |
34 |
27 33
|
jaod |
|- ( ( R e. Domn /\ X e. B /\ Y e. B ) -> ( ( X = .0. \/ Y = .0. ) -> ( X .x. Y ) = .0. ) ) |
35 |
19 34
|
impbid |
|- ( ( R e. Domn /\ X e. B /\ Y e. B ) -> ( ( X .x. Y ) = .0. <-> ( X = .0. \/ Y = .0. ) ) ) |