Step |
Hyp |
Ref |
Expression |
1 |
|
domneq0r.b |
|- B = ( Base ` R ) |
2 |
|
domneq0r.0 |
|- .0. = ( 0g ` R ) |
3 |
|
domneq0r.m |
|- .x. = ( .r ` R ) |
4 |
|
domneq0r.x |
|- ( ph -> X e. B ) |
5 |
|
domneq0r.y |
|- ( ph -> Y e. ( B \ { .0. } ) ) |
6 |
|
domneq0r.r |
|- ( ph -> R e. Domn ) |
7 |
|
domnring |
|- ( R e. Domn -> R e. Ring ) |
8 |
6 7
|
syl |
|- ( ph -> R e. Ring ) |
9 |
5
|
eldifad |
|- ( ph -> Y e. B ) |
10 |
1 3 2 8 9
|
ringlzd |
|- ( ph -> ( .0. .x. Y ) = .0. ) |
11 |
10
|
eqeq2d |
|- ( ph -> ( ( X .x. Y ) = ( .0. .x. Y ) <-> ( X .x. Y ) = .0. ) ) |
12 |
1 2
|
ring0cl |
|- ( R e. Ring -> .0. e. B ) |
13 |
8 12
|
syl |
|- ( ph -> .0. e. B ) |
14 |
1 2 3 4 13 5 6
|
domnrcanb |
|- ( ph -> ( ( X .x. Y ) = ( .0. .x. Y ) <-> X = .0. ) ) |
15 |
11 14
|
bitr3d |
|- ( ph -> ( ( X .x. Y ) = .0. <-> X = .0. ) ) |