Metamath Proof Explorer


Theorem domneq0r

Description: Right multiplication by a nonzero element does not change zeroness in a domain. Compare rrgeq0 . (Contributed by SN, 21-Jun-2025)

Ref Expression
Hypotheses domneq0r.b
|- B = ( Base ` R )
domneq0r.0
|- .0. = ( 0g ` R )
domneq0r.m
|- .x. = ( .r ` R )
domneq0r.x
|- ( ph -> X e. B )
domneq0r.y
|- ( ph -> Y e. ( B \ { .0. } ) )
domneq0r.r
|- ( ph -> R e. Domn )
Assertion domneq0r
|- ( ph -> ( ( X .x. Y ) = .0. <-> X = .0. ) )

Proof

Step Hyp Ref Expression
1 domneq0r.b
 |-  B = ( Base ` R )
2 domneq0r.0
 |-  .0. = ( 0g ` R )
3 domneq0r.m
 |-  .x. = ( .r ` R )
4 domneq0r.x
 |-  ( ph -> X e. B )
5 domneq0r.y
 |-  ( ph -> Y e. ( B \ { .0. } ) )
6 domneq0r.r
 |-  ( ph -> R e. Domn )
7 domnring
 |-  ( R e. Domn -> R e. Ring )
8 6 7 syl
 |-  ( ph -> R e. Ring )
9 5 eldifad
 |-  ( ph -> Y e. B )
10 1 3 2 8 9 ringlzd
 |-  ( ph -> ( .0. .x. Y ) = .0. )
11 10 eqeq2d
 |-  ( ph -> ( ( X .x. Y ) = ( .0. .x. Y ) <-> ( X .x. Y ) = .0. ) )
12 1 2 ring0cl
 |-  ( R e. Ring -> .0. e. B )
13 8 12 syl
 |-  ( ph -> .0. e. B )
14 1 2 3 4 13 5 6 domnrcanb
 |-  ( ph -> ( ( X .x. Y ) = ( .0. .x. Y ) <-> X = .0. ) )
15 11 14 bitr3d
 |-  ( ph -> ( ( X .x. Y ) = .0. <-> X = .0. ) )