Description: Left-cancellation law for domains. (Contributed by Thierry Arnoux, 22-Mar-2025) (Proof shortened by SN, 21-Jun-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | domncan.b | |- B = ( Base ` R ) |
|
domncan.0 | |- .0. = ( 0g ` R ) |
||
domncan.m | |- .x. = ( .r ` R ) |
||
domncan.x | |- ( ph -> X e. ( B \ { .0. } ) ) |
||
domncan.y | |- ( ph -> Y e. B ) |
||
domncan.z | |- ( ph -> Z e. B ) |
||
domncan.r | |- ( ph -> R e. Domn ) |
||
domnlcan.1 | |- ( ph -> ( X .x. Y ) = ( X .x. Z ) ) |
||
Assertion | domnlcan | |- ( ph -> Y = Z ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | domncan.b | |- B = ( Base ` R ) |
|
2 | domncan.0 | |- .0. = ( 0g ` R ) |
|
3 | domncan.m | |- .x. = ( .r ` R ) |
|
4 | domncan.x | |- ( ph -> X e. ( B \ { .0. } ) ) |
|
5 | domncan.y | |- ( ph -> Y e. B ) |
|
6 | domncan.z | |- ( ph -> Z e. B ) |
|
7 | domncan.r | |- ( ph -> R e. Domn ) |
|
8 | domnlcan.1 | |- ( ph -> ( X .x. Y ) = ( X .x. Z ) ) |
|
9 | 1 2 3 4 5 6 7 | domnlcanb | |- ( ph -> ( ( X .x. Y ) = ( X .x. Z ) <-> Y = Z ) ) |
10 | 8 9 | mpbid | |- ( ph -> Y = Z ) |