Metamath Proof Explorer


Theorem domnlcan

Description: Left-cancellation law for domains. (Contributed by Thierry Arnoux, 22-Mar-2025) (Proof shortened by SN, 21-Jun-2025)

Ref Expression
Hypotheses domncan.b
|- B = ( Base ` R )
domncan.0
|- .0. = ( 0g ` R )
domncan.m
|- .x. = ( .r ` R )
domncan.x
|- ( ph -> X e. ( B \ { .0. } ) )
domncan.y
|- ( ph -> Y e. B )
domncan.z
|- ( ph -> Z e. B )
domncan.r
|- ( ph -> R e. Domn )
domnlcan.1
|- ( ph -> ( X .x. Y ) = ( X .x. Z ) )
Assertion domnlcan
|- ( ph -> Y = Z )

Proof

Step Hyp Ref Expression
1 domncan.b
 |-  B = ( Base ` R )
2 domncan.0
 |-  .0. = ( 0g ` R )
3 domncan.m
 |-  .x. = ( .r ` R )
4 domncan.x
 |-  ( ph -> X e. ( B \ { .0. } ) )
5 domncan.y
 |-  ( ph -> Y e. B )
6 domncan.z
 |-  ( ph -> Z e. B )
7 domncan.r
 |-  ( ph -> R e. Domn )
8 domnlcan.1
 |-  ( ph -> ( X .x. Y ) = ( X .x. Z ) )
9 1 2 3 4 5 6 7 domnlcanb
 |-  ( ph -> ( ( X .x. Y ) = ( X .x. Z ) <-> Y = Z ) )
10 8 9 mpbid
 |-  ( ph -> Y = Z )