Metamath Proof Explorer


Theorem domnmuln0

Description: In a domain, a product of nonzero elements is nonzero. (Contributed by Mario Carneiro, 6-May-2015)

Ref Expression
Hypotheses domneq0.b
|- B = ( Base ` R )
domneq0.t
|- .x. = ( .r ` R )
domneq0.z
|- .0. = ( 0g ` R )
Assertion domnmuln0
|- ( ( R e. Domn /\ ( X e. B /\ X =/= .0. ) /\ ( Y e. B /\ Y =/= .0. ) ) -> ( X .x. Y ) =/= .0. )

Proof

Step Hyp Ref Expression
1 domneq0.b
 |-  B = ( Base ` R )
2 domneq0.t
 |-  .x. = ( .r ` R )
3 domneq0.z
 |-  .0. = ( 0g ` R )
4 an4
 |-  ( ( ( X e. B /\ X =/= .0. ) /\ ( Y e. B /\ Y =/= .0. ) ) <-> ( ( X e. B /\ Y e. B ) /\ ( X =/= .0. /\ Y =/= .0. ) ) )
5 neanior
 |-  ( ( X =/= .0. /\ Y =/= .0. ) <-> -. ( X = .0. \/ Y = .0. ) )
6 1 2 3 domneq0
 |-  ( ( R e. Domn /\ X e. B /\ Y e. B ) -> ( ( X .x. Y ) = .0. <-> ( X = .0. \/ Y = .0. ) ) )
7 6 3expb
 |-  ( ( R e. Domn /\ ( X e. B /\ Y e. B ) ) -> ( ( X .x. Y ) = .0. <-> ( X = .0. \/ Y = .0. ) ) )
8 7 necon3abid
 |-  ( ( R e. Domn /\ ( X e. B /\ Y e. B ) ) -> ( ( X .x. Y ) =/= .0. <-> -. ( X = .0. \/ Y = .0. ) ) )
9 5 8 bitr4id
 |-  ( ( R e. Domn /\ ( X e. B /\ Y e. B ) ) -> ( ( X =/= .0. /\ Y =/= .0. ) <-> ( X .x. Y ) =/= .0. ) )
10 9 biimpd
 |-  ( ( R e. Domn /\ ( X e. B /\ Y e. B ) ) -> ( ( X =/= .0. /\ Y =/= .0. ) -> ( X .x. Y ) =/= .0. ) )
11 10 expimpd
 |-  ( R e. Domn -> ( ( ( X e. B /\ Y e. B ) /\ ( X =/= .0. /\ Y =/= .0. ) ) -> ( X .x. Y ) =/= .0. ) )
12 4 11 syl5bi
 |-  ( R e. Domn -> ( ( ( X e. B /\ X =/= .0. ) /\ ( Y e. B /\ Y =/= .0. ) ) -> ( X .x. Y ) =/= .0. ) )
13 12 3impib
 |-  ( ( R e. Domn /\ ( X e. B /\ X =/= .0. ) /\ ( Y e. B /\ Y =/= .0. ) ) -> ( X .x. Y ) =/= .0. )