| Step | Hyp | Ref | Expression | 
						
							| 1 |  | domneq0.b |  |-  B = ( Base ` R ) | 
						
							| 2 |  | domneq0.t |  |-  .x. = ( .r ` R ) | 
						
							| 3 |  | domneq0.z |  |-  .0. = ( 0g ` R ) | 
						
							| 4 |  | an4 |  |-  ( ( ( X e. B /\ X =/= .0. ) /\ ( Y e. B /\ Y =/= .0. ) ) <-> ( ( X e. B /\ Y e. B ) /\ ( X =/= .0. /\ Y =/= .0. ) ) ) | 
						
							| 5 |  | neanior |  |-  ( ( X =/= .0. /\ Y =/= .0. ) <-> -. ( X = .0. \/ Y = .0. ) ) | 
						
							| 6 | 1 2 3 | domneq0 |  |-  ( ( R e. Domn /\ X e. B /\ Y e. B ) -> ( ( X .x. Y ) = .0. <-> ( X = .0. \/ Y = .0. ) ) ) | 
						
							| 7 | 6 | 3expb |  |-  ( ( R e. Domn /\ ( X e. B /\ Y e. B ) ) -> ( ( X .x. Y ) = .0. <-> ( X = .0. \/ Y = .0. ) ) ) | 
						
							| 8 | 7 | necon3abid |  |-  ( ( R e. Domn /\ ( X e. B /\ Y e. B ) ) -> ( ( X .x. Y ) =/= .0. <-> -. ( X = .0. \/ Y = .0. ) ) ) | 
						
							| 9 | 5 8 | bitr4id |  |-  ( ( R e. Domn /\ ( X e. B /\ Y e. B ) ) -> ( ( X =/= .0. /\ Y =/= .0. ) <-> ( X .x. Y ) =/= .0. ) ) | 
						
							| 10 | 9 | biimpd |  |-  ( ( R e. Domn /\ ( X e. B /\ Y e. B ) ) -> ( ( X =/= .0. /\ Y =/= .0. ) -> ( X .x. Y ) =/= .0. ) ) | 
						
							| 11 | 10 | expimpd |  |-  ( R e. Domn -> ( ( ( X e. B /\ Y e. B ) /\ ( X =/= .0. /\ Y =/= .0. ) ) -> ( X .x. Y ) =/= .0. ) ) | 
						
							| 12 | 4 11 | biimtrid |  |-  ( R e. Domn -> ( ( ( X e. B /\ X =/= .0. ) /\ ( Y e. B /\ Y =/= .0. ) ) -> ( X .x. Y ) =/= .0. ) ) | 
						
							| 13 | 12 | 3impib |  |-  ( ( R e. Domn /\ ( X e. B /\ X =/= .0. ) /\ ( Y e. B /\ Y =/= .0. ) ) -> ( X .x. Y ) =/= .0. ) |