Description: A domain is a nonzero ring. (Contributed by Mario Carneiro, 28-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | domnnzr | |- ( R e. Domn -> R e. NzRing ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqid | |- ( Base ` R ) = ( Base ` R ) | |
| 2 | eqid | |- ( .r ` R ) = ( .r ` R ) | |
| 3 | eqid | |- ( 0g ` R ) = ( 0g ` R ) | |
| 4 | 1 2 3 | isdomn | |- ( R e. Domn <-> ( R e. NzRing /\ A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( ( x ( .r ` R ) y ) = ( 0g ` R ) -> ( x = ( 0g ` R ) \/ y = ( 0g ` R ) ) ) ) ) | 
| 5 | 4 | simplbi | |- ( R e. Domn -> R e. NzRing ) |