Description: A domain is a nonzero ring. (Contributed by Mario Carneiro, 28-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | domnnzr | |- ( R e. Domn -> R e. NzRing ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
2 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
3 | eqid | |- ( 0g ` R ) = ( 0g ` R ) |
|
4 | 1 2 3 | isdomn | |- ( R e. Domn <-> ( R e. NzRing /\ A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( ( x ( .r ` R ) y ) = ( 0g ` R ) -> ( x = ( 0g ` R ) \/ y = ( 0g ` R ) ) ) ) ) |
5 | 4 | simplbi | |- ( R e. Domn -> R e. NzRing ) |