Metamath Proof Explorer


Theorem domnrcan

Description: Right-cancellation law for domains. (Contributed by SN, 21-Jun-2025)

Ref Expression
Hypotheses domnrcan.b
|- B = ( Base ` R )
domnrcan.0
|- .0. = ( 0g ` R )
domnrcan.m
|- .x. = ( .r ` R )
domnrcan.x
|- ( ph -> X e. B )
domnrcan.y
|- ( ph -> Y e. B )
domnrcan.z
|- ( ph -> Z e. ( B \ { .0. } ) )
domnrcan.r
|- ( ph -> R e. Domn )
domnrcan.1
|- ( ph -> ( X .x. Z ) = ( Y .x. Z ) )
Assertion domnrcan
|- ( ph -> X = Y )

Proof

Step Hyp Ref Expression
1 domnrcan.b
 |-  B = ( Base ` R )
2 domnrcan.0
 |-  .0. = ( 0g ` R )
3 domnrcan.m
 |-  .x. = ( .r ` R )
4 domnrcan.x
 |-  ( ph -> X e. B )
5 domnrcan.y
 |-  ( ph -> Y e. B )
6 domnrcan.z
 |-  ( ph -> Z e. ( B \ { .0. } ) )
7 domnrcan.r
 |-  ( ph -> R e. Domn )
8 domnrcan.1
 |-  ( ph -> ( X .x. Z ) = ( Y .x. Z ) )
9 1 2 3 4 5 6 7 domnrcanb
 |-  ( ph -> ( ( X .x. Z ) = ( Y .x. Z ) <-> X = Y ) )
10 8 9 mpbid
 |-  ( ph -> X = Y )