Description: Right-cancellation law for domains. (Contributed by SN, 21-Jun-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | domnrcan.b | |- B = ( Base ` R ) |
|
domnrcan.0 | |- .0. = ( 0g ` R ) |
||
domnrcan.m | |- .x. = ( .r ` R ) |
||
domnrcan.x | |- ( ph -> X e. B ) |
||
domnrcan.y | |- ( ph -> Y e. B ) |
||
domnrcan.z | |- ( ph -> Z e. ( B \ { .0. } ) ) |
||
domnrcan.r | |- ( ph -> R e. Domn ) |
||
domnrcan.1 | |- ( ph -> ( X .x. Z ) = ( Y .x. Z ) ) |
||
Assertion | domnrcan | |- ( ph -> X = Y ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | domnrcan.b | |- B = ( Base ` R ) |
|
2 | domnrcan.0 | |- .0. = ( 0g ` R ) |
|
3 | domnrcan.m | |- .x. = ( .r ` R ) |
|
4 | domnrcan.x | |- ( ph -> X e. B ) |
|
5 | domnrcan.y | |- ( ph -> Y e. B ) |
|
6 | domnrcan.z | |- ( ph -> Z e. ( B \ { .0. } ) ) |
|
7 | domnrcan.r | |- ( ph -> R e. Domn ) |
|
8 | domnrcan.1 | |- ( ph -> ( X .x. Z ) = ( Y .x. Z ) ) |
|
9 | 1 2 3 4 5 6 7 | domnrcanb | |- ( ph -> ( ( X .x. Z ) = ( Y .x. Z ) <-> X = Y ) ) |
10 | 8 9 | mpbid | |- ( ph -> X = Y ) |