Step |
Hyp |
Ref |
Expression |
1 |
|
isdomn2.b |
|- B = ( Base ` R ) |
2 |
|
isdomn2.t |
|- E = ( RLReg ` R ) |
3 |
|
isdomn2.z |
|- .0. = ( 0g ` R ) |
4 |
1 2 3
|
isdomn2 |
|- ( R e. Domn <-> ( R e. NzRing /\ ( B \ { .0. } ) C_ E ) ) |
5 |
4
|
simprbi |
|- ( R e. Domn -> ( B \ { .0. } ) C_ E ) |
6 |
5
|
3ad2ant1 |
|- ( ( R e. Domn /\ X e. B /\ X =/= .0. ) -> ( B \ { .0. } ) C_ E ) |
7 |
|
simp2 |
|- ( ( R e. Domn /\ X e. B /\ X =/= .0. ) -> X e. B ) |
8 |
|
simp3 |
|- ( ( R e. Domn /\ X e. B /\ X =/= .0. ) -> X =/= .0. ) |
9 |
|
eldifsn |
|- ( X e. ( B \ { .0. } ) <-> ( X e. B /\ X =/= .0. ) ) |
10 |
7 8 9
|
sylanbrc |
|- ( ( R e. Domn /\ X e. B /\ X =/= .0. ) -> X e. ( B \ { .0. } ) ) |
11 |
6 10
|
sseldd |
|- ( ( R e. Domn /\ X e. B /\ X =/= .0. ) -> X e. E ) |