| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isdomn2.b |  |-  B = ( Base ` R ) | 
						
							| 2 |  | isdomn2.t |  |-  E = ( RLReg ` R ) | 
						
							| 3 |  | isdomn2.z |  |-  .0. = ( 0g ` R ) | 
						
							| 4 | 1 2 3 | isdomn2 |  |-  ( R e. Domn <-> ( R e. NzRing /\ ( B \ { .0. } ) C_ E ) ) | 
						
							| 5 | 4 | simprbi |  |-  ( R e. Domn -> ( B \ { .0. } ) C_ E ) | 
						
							| 6 | 5 | 3ad2ant1 |  |-  ( ( R e. Domn /\ X e. B /\ X =/= .0. ) -> ( B \ { .0. } ) C_ E ) | 
						
							| 7 |  | simp2 |  |-  ( ( R e. Domn /\ X e. B /\ X =/= .0. ) -> X e. B ) | 
						
							| 8 |  | simp3 |  |-  ( ( R e. Domn /\ X e. B /\ X =/= .0. ) -> X =/= .0. ) | 
						
							| 9 |  | eldifsn |  |-  ( X e. ( B \ { .0. } ) <-> ( X e. B /\ X =/= .0. ) ) | 
						
							| 10 | 7 8 9 | sylanbrc |  |-  ( ( R e. Domn /\ X e. B /\ X =/= .0. ) -> X e. ( B \ { .0. } ) ) | 
						
							| 11 | 6 10 | sseldd |  |-  ( ( R e. Domn /\ X e. B /\ X =/= .0. ) -> X e. E ) |