Description: Theorem 22(i) of Suppes p. 97. (Contributed by NM, 10-Jun-1998)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | domnsym | |- ( A ~<_ B -> -. B ~< A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brdom2 | |- ( A ~<_ B <-> ( A ~< B \/ A ~~ B ) ) |
|
| 2 | sdomnsym | |- ( A ~< B -> -. B ~< A ) |
|
| 3 | sdomnen | |- ( B ~< A -> -. B ~~ A ) |
|
| 4 | ensym | |- ( A ~~ B -> B ~~ A ) |
|
| 5 | 3 4 | nsyl3 | |- ( A ~~ B -> -. B ~< A ) |
| 6 | 2 5 | jaoi | |- ( ( A ~< B \/ A ~~ B ) -> -. B ~< A ) |
| 7 | 1 6 | sylbi | |- ( A ~<_ B -> -. B ~< A ) |