Metamath Proof Explorer


Theorem domnsym

Description: Theorem 22(i) of Suppes p. 97. (Contributed by NM, 10-Jun-1998)

Ref Expression
Assertion domnsym
|- ( A ~<_ B -> -. B ~< A )

Proof

Step Hyp Ref Expression
1 brdom2
 |-  ( A ~<_ B <-> ( A ~< B \/ A ~~ B ) )
2 sdomnsym
 |-  ( A ~< B -> -. B ~< A )
3 sdomnen
 |-  ( B ~< A -> -. B ~~ A )
4 ensym
 |-  ( A ~~ B -> B ~~ A )
5 3 4 nsyl3
 |-  ( A ~~ B -> -. B ~< A )
6 2 5 jaoi
 |-  ( ( A ~< B \/ A ~~ B ) -> -. B ~< A )
7 1 6 sylbi
 |-  ( A ~<_ B -> -. B ~< A )