| Step | Hyp | Ref | Expression | 
						
							| 1 |  | brdom2 |  |-  ( A ~<_ B <-> ( A ~< B \/ A ~~ B ) ) | 
						
							| 2 |  | sdomnen |  |-  ( A ~< B -> -. A ~~ B ) | 
						
							| 3 | 2 | adantl |  |-  ( ( A e. Fin /\ A ~< B ) -> -. A ~~ B ) | 
						
							| 4 |  | sdomdom |  |-  ( A ~< B -> A ~<_ B ) | 
						
							| 5 |  | sdomdom |  |-  ( B ~< A -> B ~<_ A ) | 
						
							| 6 |  | sbthfi |  |-  ( ( A e. Fin /\ B ~<_ A /\ A ~<_ B ) -> B ~~ A ) | 
						
							| 7 |  | ensymfib |  |-  ( A e. Fin -> ( A ~~ B <-> B ~~ A ) ) | 
						
							| 8 | 7 | 3ad2ant1 |  |-  ( ( A e. Fin /\ B ~<_ A /\ A ~<_ B ) -> ( A ~~ B <-> B ~~ A ) ) | 
						
							| 9 | 6 8 | mpbird |  |-  ( ( A e. Fin /\ B ~<_ A /\ A ~<_ B ) -> A ~~ B ) | 
						
							| 10 | 5 9 | syl3an2 |  |-  ( ( A e. Fin /\ B ~< A /\ A ~<_ B ) -> A ~~ B ) | 
						
							| 11 | 4 10 | syl3an3 |  |-  ( ( A e. Fin /\ B ~< A /\ A ~< B ) -> A ~~ B ) | 
						
							| 12 | 11 | 3com23 |  |-  ( ( A e. Fin /\ A ~< B /\ B ~< A ) -> A ~~ B ) | 
						
							| 13 | 12 | 3expa |  |-  ( ( ( A e. Fin /\ A ~< B ) /\ B ~< A ) -> A ~~ B ) | 
						
							| 14 | 3 13 | mtand |  |-  ( ( A e. Fin /\ A ~< B ) -> -. B ~< A ) | 
						
							| 15 |  | sdomnen |  |-  ( B ~< A -> -. B ~~ A ) | 
						
							| 16 | 7 | biimpa |  |-  ( ( A e. Fin /\ A ~~ B ) -> B ~~ A ) | 
						
							| 17 | 15 16 | nsyl3 |  |-  ( ( A e. Fin /\ A ~~ B ) -> -. B ~< A ) | 
						
							| 18 | 14 17 | jaodan |  |-  ( ( A e. Fin /\ ( A ~< B \/ A ~~ B ) ) -> -. B ~< A ) | 
						
							| 19 | 1 18 | sylan2b |  |-  ( ( A e. Fin /\ A ~<_ B ) -> -. B ~< A ) |