Step |
Hyp |
Ref |
Expression |
1 |
|
brdom2 |
|- ( A ~<_ B <-> ( A ~< B \/ A ~~ B ) ) |
2 |
|
sdomnen |
|- ( A ~< B -> -. A ~~ B ) |
3 |
2
|
adantl |
|- ( ( A e. Fin /\ A ~< B ) -> -. A ~~ B ) |
4 |
|
sdomdom |
|- ( A ~< B -> A ~<_ B ) |
5 |
|
sdomdom |
|- ( B ~< A -> B ~<_ A ) |
6 |
|
sbthfi |
|- ( ( A e. Fin /\ B ~<_ A /\ A ~<_ B ) -> B ~~ A ) |
7 |
|
ensymfib |
|- ( A e. Fin -> ( A ~~ B <-> B ~~ A ) ) |
8 |
7
|
3ad2ant1 |
|- ( ( A e. Fin /\ B ~<_ A /\ A ~<_ B ) -> ( A ~~ B <-> B ~~ A ) ) |
9 |
6 8
|
mpbird |
|- ( ( A e. Fin /\ B ~<_ A /\ A ~<_ B ) -> A ~~ B ) |
10 |
5 9
|
syl3an2 |
|- ( ( A e. Fin /\ B ~< A /\ A ~<_ B ) -> A ~~ B ) |
11 |
4 10
|
syl3an3 |
|- ( ( A e. Fin /\ B ~< A /\ A ~< B ) -> A ~~ B ) |
12 |
11
|
3com23 |
|- ( ( A e. Fin /\ A ~< B /\ B ~< A ) -> A ~~ B ) |
13 |
12
|
3expa |
|- ( ( ( A e. Fin /\ A ~< B ) /\ B ~< A ) -> A ~~ B ) |
14 |
3 13
|
mtand |
|- ( ( A e. Fin /\ A ~< B ) -> -. B ~< A ) |
15 |
|
sdomnen |
|- ( B ~< A -> -. B ~~ A ) |
16 |
7
|
biimpa |
|- ( ( A e. Fin /\ A ~~ B ) -> B ~~ A ) |
17 |
15 16
|
nsyl3 |
|- ( ( A e. Fin /\ A ~~ B ) -> -. B ~< A ) |
18 |
14 17
|
jaodan |
|- ( ( A e. Fin /\ ( A ~< B \/ A ~~ B ) ) -> -. B ~< A ) |
19 |
1 18
|
sylan2b |
|- ( ( A e. Fin /\ A ~<_ B ) -> -. B ~< A ) |