| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sdomdom |
|- ( B ~< C -> B ~<_ C ) |
| 2 |
|
domtr |
|- ( ( A ~<_ B /\ B ~<_ C ) -> A ~<_ C ) |
| 3 |
1 2
|
sylan2 |
|- ( ( A ~<_ B /\ B ~< C ) -> A ~<_ C ) |
| 4 |
|
simpr |
|- ( ( A ~<_ B /\ B ~< C ) -> B ~< C ) |
| 5 |
|
ensym |
|- ( A ~~ C -> C ~~ A ) |
| 6 |
|
simpl |
|- ( ( A ~<_ B /\ B ~< C ) -> A ~<_ B ) |
| 7 |
|
endomtr |
|- ( ( C ~~ A /\ A ~<_ B ) -> C ~<_ B ) |
| 8 |
5 6 7
|
syl2anr |
|- ( ( ( A ~<_ B /\ B ~< C ) /\ A ~~ C ) -> C ~<_ B ) |
| 9 |
|
domnsym |
|- ( C ~<_ B -> -. B ~< C ) |
| 10 |
8 9
|
syl |
|- ( ( ( A ~<_ B /\ B ~< C ) /\ A ~~ C ) -> -. B ~< C ) |
| 11 |
10
|
ex |
|- ( ( A ~<_ B /\ B ~< C ) -> ( A ~~ C -> -. B ~< C ) ) |
| 12 |
4 11
|
mt2d |
|- ( ( A ~<_ B /\ B ~< C ) -> -. A ~~ C ) |
| 13 |
|
brsdom |
|- ( A ~< C <-> ( A ~<_ C /\ -. A ~~ C ) ) |
| 14 |
3 12 13
|
sylanbrc |
|- ( ( A ~<_ B /\ B ~< C ) -> A ~< C ) |