| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sdomdom |  |-  ( B ~< C -> B ~<_ C ) | 
						
							| 2 |  | domtrfil |  |-  ( ( A e. Fin /\ A ~<_ B /\ B ~<_ C ) -> A ~<_ C ) | 
						
							| 3 | 1 2 | syl3an3 |  |-  ( ( A e. Fin /\ A ~<_ B /\ B ~< C ) -> A ~<_ C ) | 
						
							| 4 |  | ensymfib |  |-  ( A e. Fin -> ( A ~~ C <-> C ~~ A ) ) | 
						
							| 5 | 4 | biimpa |  |-  ( ( A e. Fin /\ A ~~ C ) -> C ~~ A ) | 
						
							| 6 | 5 | 3adant3 |  |-  ( ( A e. Fin /\ A ~~ C /\ A ~<_ B ) -> C ~~ A ) | 
						
							| 7 |  | enfii |  |-  ( ( A e. Fin /\ C ~~ A ) -> C e. Fin ) | 
						
							| 8 | 7 | 3adant3 |  |-  ( ( A e. Fin /\ C ~~ A /\ A ~<_ B ) -> C e. Fin ) | 
						
							| 9 |  | endom |  |-  ( C ~~ A -> C ~<_ A ) | 
						
							| 10 |  | domtrfi |  |-  ( ( A e. Fin /\ C ~<_ A /\ A ~<_ B ) -> C ~<_ B ) | 
						
							| 11 | 9 10 | syl3an2 |  |-  ( ( A e. Fin /\ C ~~ A /\ A ~<_ B ) -> C ~<_ B ) | 
						
							| 12 | 8 11 | jca |  |-  ( ( A e. Fin /\ C ~~ A /\ A ~<_ B ) -> ( C e. Fin /\ C ~<_ B ) ) | 
						
							| 13 | 6 12 | syld3an2 |  |-  ( ( A e. Fin /\ A ~~ C /\ A ~<_ B ) -> ( C e. Fin /\ C ~<_ B ) ) | 
						
							| 14 |  | domnsymfi |  |-  ( ( C e. Fin /\ C ~<_ B ) -> -. B ~< C ) | 
						
							| 15 | 13 14 | syl |  |-  ( ( A e. Fin /\ A ~~ C /\ A ~<_ B ) -> -. B ~< C ) | 
						
							| 16 | 15 | 3com23 |  |-  ( ( A e. Fin /\ A ~<_ B /\ A ~~ C ) -> -. B ~< C ) | 
						
							| 17 | 16 | 3expia |  |-  ( ( A e. Fin /\ A ~<_ B ) -> ( A ~~ C -> -. B ~< C ) ) | 
						
							| 18 | 17 | con2d |  |-  ( ( A e. Fin /\ A ~<_ B ) -> ( B ~< C -> -. A ~~ C ) ) | 
						
							| 19 | 18 | 3impia |  |-  ( ( A e. Fin /\ A ~<_ B /\ B ~< C ) -> -. A ~~ C ) | 
						
							| 20 |  | brsdom |  |-  ( A ~< C <-> ( A ~<_ C /\ -. A ~~ C ) ) | 
						
							| 21 | 3 19 20 | sylanbrc |  |-  ( ( A e. Fin /\ A ~<_ B /\ B ~< C ) -> A ~< C ) |