| Step | Hyp | Ref | Expression | 
						
							| 1 |  | domss2.1 |  |-  G = `' ( F u. ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) | 
						
							| 2 |  | f1f1orn |  |-  ( F : A -1-1-> B -> F : A -1-1-onto-> ran F ) | 
						
							| 3 | 2 | 3ad2ant1 |  |-  ( ( F : A -1-1-> B /\ A e. V /\ B e. W ) -> F : A -1-1-onto-> ran F ) | 
						
							| 4 |  | simp2 |  |-  ( ( F : A -1-1-> B /\ A e. V /\ B e. W ) -> A e. V ) | 
						
							| 5 |  | rnexg |  |-  ( A e. V -> ran A e. _V ) | 
						
							| 6 | 4 5 | syl |  |-  ( ( F : A -1-1-> B /\ A e. V /\ B e. W ) -> ran A e. _V ) | 
						
							| 7 |  | uniexg |  |-  ( ran A e. _V -> U. ran A e. _V ) | 
						
							| 8 |  | pwexg |  |-  ( U. ran A e. _V -> ~P U. ran A e. _V ) | 
						
							| 9 | 6 7 8 | 3syl |  |-  ( ( F : A -1-1-> B /\ A e. V /\ B e. W ) -> ~P U. ran A e. _V ) | 
						
							| 10 |  | 1stconst |  |-  ( ~P U. ran A e. _V -> ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) : ( ( B \ ran F ) X. { ~P U. ran A } ) -1-1-onto-> ( B \ ran F ) ) | 
						
							| 11 | 9 10 | syl |  |-  ( ( F : A -1-1-> B /\ A e. V /\ B e. W ) -> ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) : ( ( B \ ran F ) X. { ~P U. ran A } ) -1-1-onto-> ( B \ ran F ) ) | 
						
							| 12 |  | difexg |  |-  ( B e. W -> ( B \ ran F ) e. _V ) | 
						
							| 13 | 12 | 3ad2ant3 |  |-  ( ( F : A -1-1-> B /\ A e. V /\ B e. W ) -> ( B \ ran F ) e. _V ) | 
						
							| 14 |  | disjen |  |-  ( ( A e. V /\ ( B \ ran F ) e. _V ) -> ( ( A i^i ( ( B \ ran F ) X. { ~P U. ran A } ) ) = (/) /\ ( ( B \ ran F ) X. { ~P U. ran A } ) ~~ ( B \ ran F ) ) ) | 
						
							| 15 | 4 13 14 | syl2anc |  |-  ( ( F : A -1-1-> B /\ A e. V /\ B e. W ) -> ( ( A i^i ( ( B \ ran F ) X. { ~P U. ran A } ) ) = (/) /\ ( ( B \ ran F ) X. { ~P U. ran A } ) ~~ ( B \ ran F ) ) ) | 
						
							| 16 | 15 | simpld |  |-  ( ( F : A -1-1-> B /\ A e. V /\ B e. W ) -> ( A i^i ( ( B \ ran F ) X. { ~P U. ran A } ) ) = (/) ) | 
						
							| 17 |  | disjdif |  |-  ( ran F i^i ( B \ ran F ) ) = (/) | 
						
							| 18 | 17 | a1i |  |-  ( ( F : A -1-1-> B /\ A e. V /\ B e. W ) -> ( ran F i^i ( B \ ran F ) ) = (/) ) | 
						
							| 19 |  | f1oun |  |-  ( ( ( F : A -1-1-onto-> ran F /\ ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) : ( ( B \ ran F ) X. { ~P U. ran A } ) -1-1-onto-> ( B \ ran F ) ) /\ ( ( A i^i ( ( B \ ran F ) X. { ~P U. ran A } ) ) = (/) /\ ( ran F i^i ( B \ ran F ) ) = (/) ) ) -> ( F u. ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) : ( A u. ( ( B \ ran F ) X. { ~P U. ran A } ) ) -1-1-onto-> ( ran F u. ( B \ ran F ) ) ) | 
						
							| 20 | 3 11 16 18 19 | syl22anc |  |-  ( ( F : A -1-1-> B /\ A e. V /\ B e. W ) -> ( F u. ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) : ( A u. ( ( B \ ran F ) X. { ~P U. ran A } ) ) -1-1-onto-> ( ran F u. ( B \ ran F ) ) ) | 
						
							| 21 |  | undif2 |  |-  ( ran F u. ( B \ ran F ) ) = ( ran F u. B ) | 
						
							| 22 |  | f1f |  |-  ( F : A -1-1-> B -> F : A --> B ) | 
						
							| 23 | 22 | 3ad2ant1 |  |-  ( ( F : A -1-1-> B /\ A e. V /\ B e. W ) -> F : A --> B ) | 
						
							| 24 | 23 | frnd |  |-  ( ( F : A -1-1-> B /\ A e. V /\ B e. W ) -> ran F C_ B ) | 
						
							| 25 |  | ssequn1 |  |-  ( ran F C_ B <-> ( ran F u. B ) = B ) | 
						
							| 26 | 24 25 | sylib |  |-  ( ( F : A -1-1-> B /\ A e. V /\ B e. W ) -> ( ran F u. B ) = B ) | 
						
							| 27 | 21 26 | eqtrid |  |-  ( ( F : A -1-1-> B /\ A e. V /\ B e. W ) -> ( ran F u. ( B \ ran F ) ) = B ) | 
						
							| 28 | 27 | f1oeq3d |  |-  ( ( F : A -1-1-> B /\ A e. V /\ B e. W ) -> ( ( F u. ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) : ( A u. ( ( B \ ran F ) X. { ~P U. ran A } ) ) -1-1-onto-> ( ran F u. ( B \ ran F ) ) <-> ( F u. ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) : ( A u. ( ( B \ ran F ) X. { ~P U. ran A } ) ) -1-1-onto-> B ) ) | 
						
							| 29 | 20 28 | mpbid |  |-  ( ( F : A -1-1-> B /\ A e. V /\ B e. W ) -> ( F u. ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) : ( A u. ( ( B \ ran F ) X. { ~P U. ran A } ) ) -1-1-onto-> B ) | 
						
							| 30 |  | f1ocnv |  |-  ( ( F u. ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) : ( A u. ( ( B \ ran F ) X. { ~P U. ran A } ) ) -1-1-onto-> B -> `' ( F u. ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) : B -1-1-onto-> ( A u. ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) | 
						
							| 31 | 29 30 | syl |  |-  ( ( F : A -1-1-> B /\ A e. V /\ B e. W ) -> `' ( F u. ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) : B -1-1-onto-> ( A u. ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) | 
						
							| 32 |  | f1oeq1 |  |-  ( G = `' ( F u. ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) -> ( G : B -1-1-onto-> ( A u. ( ( B \ ran F ) X. { ~P U. ran A } ) ) <-> `' ( F u. ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) : B -1-1-onto-> ( A u. ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) ) | 
						
							| 33 | 1 32 | ax-mp |  |-  ( G : B -1-1-onto-> ( A u. ( ( B \ ran F ) X. { ~P U. ran A } ) ) <-> `' ( F u. ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) : B -1-1-onto-> ( A u. ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) | 
						
							| 34 | 31 33 | sylibr |  |-  ( ( F : A -1-1-> B /\ A e. V /\ B e. W ) -> G : B -1-1-onto-> ( A u. ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) | 
						
							| 35 |  | f1ofo |  |-  ( G : B -1-1-onto-> ( A u. ( ( B \ ran F ) X. { ~P U. ran A } ) ) -> G : B -onto-> ( A u. ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) | 
						
							| 36 |  | forn |  |-  ( G : B -onto-> ( A u. ( ( B \ ran F ) X. { ~P U. ran A } ) ) -> ran G = ( A u. ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) | 
						
							| 37 | 34 35 36 | 3syl |  |-  ( ( F : A -1-1-> B /\ A e. V /\ B e. W ) -> ran G = ( A u. ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) | 
						
							| 38 | 37 | f1oeq3d |  |-  ( ( F : A -1-1-> B /\ A e. V /\ B e. W ) -> ( G : B -1-1-onto-> ran G <-> G : B -1-1-onto-> ( A u. ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) ) | 
						
							| 39 | 34 38 | mpbird |  |-  ( ( F : A -1-1-> B /\ A e. V /\ B e. W ) -> G : B -1-1-onto-> ran G ) | 
						
							| 40 |  | ssun1 |  |-  A C_ ( A u. ( ( B \ ran F ) X. { ~P U. ran A } ) ) | 
						
							| 41 | 40 37 | sseqtrrid |  |-  ( ( F : A -1-1-> B /\ A e. V /\ B e. W ) -> A C_ ran G ) | 
						
							| 42 |  | ssid |  |-  ran F C_ ran F | 
						
							| 43 |  | cores |  |-  ( ran F C_ ran F -> ( ( G |` ran F ) o. F ) = ( G o. F ) ) | 
						
							| 44 | 42 43 | ax-mp |  |-  ( ( G |` ran F ) o. F ) = ( G o. F ) | 
						
							| 45 |  | dmres |  |-  dom ( `' ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) |` ran F ) = ( ran F i^i dom `' ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) | 
						
							| 46 |  | f1ocnv |  |-  ( ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) : ( ( B \ ran F ) X. { ~P U. ran A } ) -1-1-onto-> ( B \ ran F ) -> `' ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) : ( B \ ran F ) -1-1-onto-> ( ( B \ ran F ) X. { ~P U. ran A } ) ) | 
						
							| 47 |  | f1odm |  |-  ( `' ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) : ( B \ ran F ) -1-1-onto-> ( ( B \ ran F ) X. { ~P U. ran A } ) -> dom `' ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) = ( B \ ran F ) ) | 
						
							| 48 | 11 46 47 | 3syl |  |-  ( ( F : A -1-1-> B /\ A e. V /\ B e. W ) -> dom `' ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) = ( B \ ran F ) ) | 
						
							| 49 | 48 | ineq2d |  |-  ( ( F : A -1-1-> B /\ A e. V /\ B e. W ) -> ( ran F i^i dom `' ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) = ( ran F i^i ( B \ ran F ) ) ) | 
						
							| 50 | 49 17 | eqtrdi |  |-  ( ( F : A -1-1-> B /\ A e. V /\ B e. W ) -> ( ran F i^i dom `' ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) = (/) ) | 
						
							| 51 | 45 50 | eqtrid |  |-  ( ( F : A -1-1-> B /\ A e. V /\ B e. W ) -> dom ( `' ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) |` ran F ) = (/) ) | 
						
							| 52 |  | relres |  |-  Rel ( `' ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) |` ran F ) | 
						
							| 53 |  | reldm0 |  |-  ( Rel ( `' ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) |` ran F ) -> ( ( `' ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) |` ran F ) = (/) <-> dom ( `' ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) |` ran F ) = (/) ) ) | 
						
							| 54 | 52 53 | ax-mp |  |-  ( ( `' ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) |` ran F ) = (/) <-> dom ( `' ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) |` ran F ) = (/) ) | 
						
							| 55 | 51 54 | sylibr |  |-  ( ( F : A -1-1-> B /\ A e. V /\ B e. W ) -> ( `' ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) |` ran F ) = (/) ) | 
						
							| 56 | 55 | uneq2d |  |-  ( ( F : A -1-1-> B /\ A e. V /\ B e. W ) -> ( `' F u. ( `' ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) |` ran F ) ) = ( `' F u. (/) ) ) | 
						
							| 57 |  | cnvun |  |-  `' ( F u. ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) = ( `' F u. `' ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) | 
						
							| 58 | 1 57 | eqtri |  |-  G = ( `' F u. `' ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) | 
						
							| 59 | 58 | reseq1i |  |-  ( G |` ran F ) = ( ( `' F u. `' ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) |` ran F ) | 
						
							| 60 |  | resundir |  |-  ( ( `' F u. `' ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) |` ran F ) = ( ( `' F |` ran F ) u. ( `' ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) |` ran F ) ) | 
						
							| 61 |  | df-rn |  |-  ran F = dom `' F | 
						
							| 62 | 61 | reseq2i |  |-  ( `' F |` ran F ) = ( `' F |` dom `' F ) | 
						
							| 63 |  | relcnv |  |-  Rel `' F | 
						
							| 64 |  | resdm |  |-  ( Rel `' F -> ( `' F |` dom `' F ) = `' F ) | 
						
							| 65 | 63 64 | ax-mp |  |-  ( `' F |` dom `' F ) = `' F | 
						
							| 66 | 62 65 | eqtri |  |-  ( `' F |` ran F ) = `' F | 
						
							| 67 | 66 | uneq1i |  |-  ( ( `' F |` ran F ) u. ( `' ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) |` ran F ) ) = ( `' F u. ( `' ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) |` ran F ) ) | 
						
							| 68 | 59 60 67 | 3eqtrri |  |-  ( `' F u. ( `' ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) |` ran F ) ) = ( G |` ran F ) | 
						
							| 69 |  | un0 |  |-  ( `' F u. (/) ) = `' F | 
						
							| 70 | 56 68 69 | 3eqtr3g |  |-  ( ( F : A -1-1-> B /\ A e. V /\ B e. W ) -> ( G |` ran F ) = `' F ) | 
						
							| 71 | 70 | coeq1d |  |-  ( ( F : A -1-1-> B /\ A e. V /\ B e. W ) -> ( ( G |` ran F ) o. F ) = ( `' F o. F ) ) | 
						
							| 72 |  | f1cocnv1 |  |-  ( F : A -1-1-> B -> ( `' F o. F ) = ( _I |` A ) ) | 
						
							| 73 | 72 | 3ad2ant1 |  |-  ( ( F : A -1-1-> B /\ A e. V /\ B e. W ) -> ( `' F o. F ) = ( _I |` A ) ) | 
						
							| 74 | 71 73 | eqtrd |  |-  ( ( F : A -1-1-> B /\ A e. V /\ B e. W ) -> ( ( G |` ran F ) o. F ) = ( _I |` A ) ) | 
						
							| 75 | 44 74 | eqtr3id |  |-  ( ( F : A -1-1-> B /\ A e. V /\ B e. W ) -> ( G o. F ) = ( _I |` A ) ) | 
						
							| 76 | 39 41 75 | 3jca |  |-  ( ( F : A -1-1-> B /\ A e. V /\ B e. W ) -> ( G : B -1-1-onto-> ran G /\ A C_ ran G /\ ( G o. F ) = ( _I |` A ) ) ) |