Step |
Hyp |
Ref |
Expression |
1 |
|
domss2.1 |
|- G = `' ( F u. ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) |
2 |
|
f1f1orn |
|- ( F : A -1-1-> B -> F : A -1-1-onto-> ran F ) |
3 |
2
|
3ad2ant1 |
|- ( ( F : A -1-1-> B /\ A e. V /\ B e. W ) -> F : A -1-1-onto-> ran F ) |
4 |
|
simp2 |
|- ( ( F : A -1-1-> B /\ A e. V /\ B e. W ) -> A e. V ) |
5 |
|
rnexg |
|- ( A e. V -> ran A e. _V ) |
6 |
4 5
|
syl |
|- ( ( F : A -1-1-> B /\ A e. V /\ B e. W ) -> ran A e. _V ) |
7 |
|
uniexg |
|- ( ran A e. _V -> U. ran A e. _V ) |
8 |
|
pwexg |
|- ( U. ran A e. _V -> ~P U. ran A e. _V ) |
9 |
6 7 8
|
3syl |
|- ( ( F : A -1-1-> B /\ A e. V /\ B e. W ) -> ~P U. ran A e. _V ) |
10 |
|
1stconst |
|- ( ~P U. ran A e. _V -> ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) : ( ( B \ ran F ) X. { ~P U. ran A } ) -1-1-onto-> ( B \ ran F ) ) |
11 |
9 10
|
syl |
|- ( ( F : A -1-1-> B /\ A e. V /\ B e. W ) -> ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) : ( ( B \ ran F ) X. { ~P U. ran A } ) -1-1-onto-> ( B \ ran F ) ) |
12 |
|
difexg |
|- ( B e. W -> ( B \ ran F ) e. _V ) |
13 |
12
|
3ad2ant3 |
|- ( ( F : A -1-1-> B /\ A e. V /\ B e. W ) -> ( B \ ran F ) e. _V ) |
14 |
|
disjen |
|- ( ( A e. V /\ ( B \ ran F ) e. _V ) -> ( ( A i^i ( ( B \ ran F ) X. { ~P U. ran A } ) ) = (/) /\ ( ( B \ ran F ) X. { ~P U. ran A } ) ~~ ( B \ ran F ) ) ) |
15 |
4 13 14
|
syl2anc |
|- ( ( F : A -1-1-> B /\ A e. V /\ B e. W ) -> ( ( A i^i ( ( B \ ran F ) X. { ~P U. ran A } ) ) = (/) /\ ( ( B \ ran F ) X. { ~P U. ran A } ) ~~ ( B \ ran F ) ) ) |
16 |
15
|
simpld |
|- ( ( F : A -1-1-> B /\ A e. V /\ B e. W ) -> ( A i^i ( ( B \ ran F ) X. { ~P U. ran A } ) ) = (/) ) |
17 |
|
disjdif |
|- ( ran F i^i ( B \ ran F ) ) = (/) |
18 |
17
|
a1i |
|- ( ( F : A -1-1-> B /\ A e. V /\ B e. W ) -> ( ran F i^i ( B \ ran F ) ) = (/) ) |
19 |
|
f1oun |
|- ( ( ( F : A -1-1-onto-> ran F /\ ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) : ( ( B \ ran F ) X. { ~P U. ran A } ) -1-1-onto-> ( B \ ran F ) ) /\ ( ( A i^i ( ( B \ ran F ) X. { ~P U. ran A } ) ) = (/) /\ ( ran F i^i ( B \ ran F ) ) = (/) ) ) -> ( F u. ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) : ( A u. ( ( B \ ran F ) X. { ~P U. ran A } ) ) -1-1-onto-> ( ran F u. ( B \ ran F ) ) ) |
20 |
3 11 16 18 19
|
syl22anc |
|- ( ( F : A -1-1-> B /\ A e. V /\ B e. W ) -> ( F u. ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) : ( A u. ( ( B \ ran F ) X. { ~P U. ran A } ) ) -1-1-onto-> ( ran F u. ( B \ ran F ) ) ) |
21 |
|
undif2 |
|- ( ran F u. ( B \ ran F ) ) = ( ran F u. B ) |
22 |
|
f1f |
|- ( F : A -1-1-> B -> F : A --> B ) |
23 |
22
|
3ad2ant1 |
|- ( ( F : A -1-1-> B /\ A e. V /\ B e. W ) -> F : A --> B ) |
24 |
23
|
frnd |
|- ( ( F : A -1-1-> B /\ A e. V /\ B e. W ) -> ran F C_ B ) |
25 |
|
ssequn1 |
|- ( ran F C_ B <-> ( ran F u. B ) = B ) |
26 |
24 25
|
sylib |
|- ( ( F : A -1-1-> B /\ A e. V /\ B e. W ) -> ( ran F u. B ) = B ) |
27 |
21 26
|
eqtrid |
|- ( ( F : A -1-1-> B /\ A e. V /\ B e. W ) -> ( ran F u. ( B \ ran F ) ) = B ) |
28 |
27
|
f1oeq3d |
|- ( ( F : A -1-1-> B /\ A e. V /\ B e. W ) -> ( ( F u. ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) : ( A u. ( ( B \ ran F ) X. { ~P U. ran A } ) ) -1-1-onto-> ( ran F u. ( B \ ran F ) ) <-> ( F u. ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) : ( A u. ( ( B \ ran F ) X. { ~P U. ran A } ) ) -1-1-onto-> B ) ) |
29 |
20 28
|
mpbid |
|- ( ( F : A -1-1-> B /\ A e. V /\ B e. W ) -> ( F u. ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) : ( A u. ( ( B \ ran F ) X. { ~P U. ran A } ) ) -1-1-onto-> B ) |
30 |
|
f1ocnv |
|- ( ( F u. ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) : ( A u. ( ( B \ ran F ) X. { ~P U. ran A } ) ) -1-1-onto-> B -> `' ( F u. ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) : B -1-1-onto-> ( A u. ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) |
31 |
29 30
|
syl |
|- ( ( F : A -1-1-> B /\ A e. V /\ B e. W ) -> `' ( F u. ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) : B -1-1-onto-> ( A u. ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) |
32 |
|
f1oeq1 |
|- ( G = `' ( F u. ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) -> ( G : B -1-1-onto-> ( A u. ( ( B \ ran F ) X. { ~P U. ran A } ) ) <-> `' ( F u. ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) : B -1-1-onto-> ( A u. ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) ) |
33 |
1 32
|
ax-mp |
|- ( G : B -1-1-onto-> ( A u. ( ( B \ ran F ) X. { ~P U. ran A } ) ) <-> `' ( F u. ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) : B -1-1-onto-> ( A u. ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) |
34 |
31 33
|
sylibr |
|- ( ( F : A -1-1-> B /\ A e. V /\ B e. W ) -> G : B -1-1-onto-> ( A u. ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) |
35 |
|
f1ofo |
|- ( G : B -1-1-onto-> ( A u. ( ( B \ ran F ) X. { ~P U. ran A } ) ) -> G : B -onto-> ( A u. ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) |
36 |
|
forn |
|- ( G : B -onto-> ( A u. ( ( B \ ran F ) X. { ~P U. ran A } ) ) -> ran G = ( A u. ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) |
37 |
34 35 36
|
3syl |
|- ( ( F : A -1-1-> B /\ A e. V /\ B e. W ) -> ran G = ( A u. ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) |
38 |
37
|
f1oeq3d |
|- ( ( F : A -1-1-> B /\ A e. V /\ B e. W ) -> ( G : B -1-1-onto-> ran G <-> G : B -1-1-onto-> ( A u. ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) ) |
39 |
34 38
|
mpbird |
|- ( ( F : A -1-1-> B /\ A e. V /\ B e. W ) -> G : B -1-1-onto-> ran G ) |
40 |
|
ssun1 |
|- A C_ ( A u. ( ( B \ ran F ) X. { ~P U. ran A } ) ) |
41 |
40 37
|
sseqtrrid |
|- ( ( F : A -1-1-> B /\ A e. V /\ B e. W ) -> A C_ ran G ) |
42 |
|
ssid |
|- ran F C_ ran F |
43 |
|
cores |
|- ( ran F C_ ran F -> ( ( G |` ran F ) o. F ) = ( G o. F ) ) |
44 |
42 43
|
ax-mp |
|- ( ( G |` ran F ) o. F ) = ( G o. F ) |
45 |
|
dmres |
|- dom ( `' ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) |` ran F ) = ( ran F i^i dom `' ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) |
46 |
|
f1ocnv |
|- ( ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) : ( ( B \ ran F ) X. { ~P U. ran A } ) -1-1-onto-> ( B \ ran F ) -> `' ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) : ( B \ ran F ) -1-1-onto-> ( ( B \ ran F ) X. { ~P U. ran A } ) ) |
47 |
|
f1odm |
|- ( `' ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) : ( B \ ran F ) -1-1-onto-> ( ( B \ ran F ) X. { ~P U. ran A } ) -> dom `' ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) = ( B \ ran F ) ) |
48 |
11 46 47
|
3syl |
|- ( ( F : A -1-1-> B /\ A e. V /\ B e. W ) -> dom `' ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) = ( B \ ran F ) ) |
49 |
48
|
ineq2d |
|- ( ( F : A -1-1-> B /\ A e. V /\ B e. W ) -> ( ran F i^i dom `' ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) = ( ran F i^i ( B \ ran F ) ) ) |
50 |
49 17
|
eqtrdi |
|- ( ( F : A -1-1-> B /\ A e. V /\ B e. W ) -> ( ran F i^i dom `' ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) = (/) ) |
51 |
45 50
|
eqtrid |
|- ( ( F : A -1-1-> B /\ A e. V /\ B e. W ) -> dom ( `' ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) |` ran F ) = (/) ) |
52 |
|
relres |
|- Rel ( `' ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) |` ran F ) |
53 |
|
reldm0 |
|- ( Rel ( `' ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) |` ran F ) -> ( ( `' ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) |` ran F ) = (/) <-> dom ( `' ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) |` ran F ) = (/) ) ) |
54 |
52 53
|
ax-mp |
|- ( ( `' ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) |` ran F ) = (/) <-> dom ( `' ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) |` ran F ) = (/) ) |
55 |
51 54
|
sylibr |
|- ( ( F : A -1-1-> B /\ A e. V /\ B e. W ) -> ( `' ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) |` ran F ) = (/) ) |
56 |
55
|
uneq2d |
|- ( ( F : A -1-1-> B /\ A e. V /\ B e. W ) -> ( `' F u. ( `' ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) |` ran F ) ) = ( `' F u. (/) ) ) |
57 |
|
cnvun |
|- `' ( F u. ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) = ( `' F u. `' ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) |
58 |
1 57
|
eqtri |
|- G = ( `' F u. `' ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) |
59 |
58
|
reseq1i |
|- ( G |` ran F ) = ( ( `' F u. `' ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) |` ran F ) |
60 |
|
resundir |
|- ( ( `' F u. `' ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) |` ran F ) = ( ( `' F |` ran F ) u. ( `' ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) |` ran F ) ) |
61 |
|
df-rn |
|- ran F = dom `' F |
62 |
61
|
reseq2i |
|- ( `' F |` ran F ) = ( `' F |` dom `' F ) |
63 |
|
relcnv |
|- Rel `' F |
64 |
|
resdm |
|- ( Rel `' F -> ( `' F |` dom `' F ) = `' F ) |
65 |
63 64
|
ax-mp |
|- ( `' F |` dom `' F ) = `' F |
66 |
62 65
|
eqtri |
|- ( `' F |` ran F ) = `' F |
67 |
66
|
uneq1i |
|- ( ( `' F |` ran F ) u. ( `' ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) |` ran F ) ) = ( `' F u. ( `' ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) |` ran F ) ) |
68 |
59 60 67
|
3eqtrri |
|- ( `' F u. ( `' ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) |` ran F ) ) = ( G |` ran F ) |
69 |
|
un0 |
|- ( `' F u. (/) ) = `' F |
70 |
56 68 69
|
3eqtr3g |
|- ( ( F : A -1-1-> B /\ A e. V /\ B e. W ) -> ( G |` ran F ) = `' F ) |
71 |
70
|
coeq1d |
|- ( ( F : A -1-1-> B /\ A e. V /\ B e. W ) -> ( ( G |` ran F ) o. F ) = ( `' F o. F ) ) |
72 |
|
f1cocnv1 |
|- ( F : A -1-1-> B -> ( `' F o. F ) = ( _I |` A ) ) |
73 |
72
|
3ad2ant1 |
|- ( ( F : A -1-1-> B /\ A e. V /\ B e. W ) -> ( `' F o. F ) = ( _I |` A ) ) |
74 |
71 73
|
eqtrd |
|- ( ( F : A -1-1-> B /\ A e. V /\ B e. W ) -> ( ( G |` ran F ) o. F ) = ( _I |` A ) ) |
75 |
44 74
|
eqtr3id |
|- ( ( F : A -1-1-> B /\ A e. V /\ B e. W ) -> ( G o. F ) = ( _I |` A ) ) |
76 |
39 41 75
|
3jca |
|- ( ( F : A -1-1-> B /\ A e. V /\ B e. W ) -> ( G : B -1-1-onto-> ran G /\ A C_ ran G /\ ( G o. F ) = ( _I |` A ) ) ) |