Step |
Hyp |
Ref |
Expression |
1 |
|
brdomi |
|- ( A ~<_ B -> E. f f : A -1-1-> B ) |
2 |
|
reldom |
|- Rel ~<_ |
3 |
2
|
brrelex2i |
|- ( A ~<_ B -> B e. _V ) |
4 |
|
vex |
|- f e. _V |
5 |
|
f1stres |
|- ( 1st |` ( ( B \ ran f ) X. { ~P U. ran A } ) ) : ( ( B \ ran f ) X. { ~P U. ran A } ) --> ( B \ ran f ) |
6 |
|
difexg |
|- ( B e. _V -> ( B \ ran f ) e. _V ) |
7 |
6
|
adantl |
|- ( ( f : A -1-1-> B /\ B e. _V ) -> ( B \ ran f ) e. _V ) |
8 |
|
snex |
|- { ~P U. ran A } e. _V |
9 |
|
xpexg |
|- ( ( ( B \ ran f ) e. _V /\ { ~P U. ran A } e. _V ) -> ( ( B \ ran f ) X. { ~P U. ran A } ) e. _V ) |
10 |
7 8 9
|
sylancl |
|- ( ( f : A -1-1-> B /\ B e. _V ) -> ( ( B \ ran f ) X. { ~P U. ran A } ) e. _V ) |
11 |
|
fex2 |
|- ( ( ( 1st |` ( ( B \ ran f ) X. { ~P U. ran A } ) ) : ( ( B \ ran f ) X. { ~P U. ran A } ) --> ( B \ ran f ) /\ ( ( B \ ran f ) X. { ~P U. ran A } ) e. _V /\ ( B \ ran f ) e. _V ) -> ( 1st |` ( ( B \ ran f ) X. { ~P U. ran A } ) ) e. _V ) |
12 |
5 10 7 11
|
mp3an2i |
|- ( ( f : A -1-1-> B /\ B e. _V ) -> ( 1st |` ( ( B \ ran f ) X. { ~P U. ran A } ) ) e. _V ) |
13 |
|
unexg |
|- ( ( f e. _V /\ ( 1st |` ( ( B \ ran f ) X. { ~P U. ran A } ) ) e. _V ) -> ( f u. ( 1st |` ( ( B \ ran f ) X. { ~P U. ran A } ) ) ) e. _V ) |
14 |
4 12 13
|
sylancr |
|- ( ( f : A -1-1-> B /\ B e. _V ) -> ( f u. ( 1st |` ( ( B \ ran f ) X. { ~P U. ran A } ) ) ) e. _V ) |
15 |
|
cnvexg |
|- ( ( f u. ( 1st |` ( ( B \ ran f ) X. { ~P U. ran A } ) ) ) e. _V -> `' ( f u. ( 1st |` ( ( B \ ran f ) X. { ~P U. ran A } ) ) ) e. _V ) |
16 |
14 15
|
syl |
|- ( ( f : A -1-1-> B /\ B e. _V ) -> `' ( f u. ( 1st |` ( ( B \ ran f ) X. { ~P U. ran A } ) ) ) e. _V ) |
17 |
|
rnexg |
|- ( `' ( f u. ( 1st |` ( ( B \ ran f ) X. { ~P U. ran A } ) ) ) e. _V -> ran `' ( f u. ( 1st |` ( ( B \ ran f ) X. { ~P U. ran A } ) ) ) e. _V ) |
18 |
16 17
|
syl |
|- ( ( f : A -1-1-> B /\ B e. _V ) -> ran `' ( f u. ( 1st |` ( ( B \ ran f ) X. { ~P U. ran A } ) ) ) e. _V ) |
19 |
|
simpl |
|- ( ( f : A -1-1-> B /\ B e. _V ) -> f : A -1-1-> B ) |
20 |
|
f1dm |
|- ( f : A -1-1-> B -> dom f = A ) |
21 |
4
|
dmex |
|- dom f e. _V |
22 |
20 21
|
eqeltrrdi |
|- ( f : A -1-1-> B -> A e. _V ) |
23 |
22
|
adantr |
|- ( ( f : A -1-1-> B /\ B e. _V ) -> A e. _V ) |
24 |
|
simpr |
|- ( ( f : A -1-1-> B /\ B e. _V ) -> B e. _V ) |
25 |
|
eqid |
|- `' ( f u. ( 1st |` ( ( B \ ran f ) X. { ~P U. ran A } ) ) ) = `' ( f u. ( 1st |` ( ( B \ ran f ) X. { ~P U. ran A } ) ) ) |
26 |
25
|
domss2 |
|- ( ( f : A -1-1-> B /\ A e. _V /\ B e. _V ) -> ( `' ( f u. ( 1st |` ( ( B \ ran f ) X. { ~P U. ran A } ) ) ) : B -1-1-onto-> ran `' ( f u. ( 1st |` ( ( B \ ran f ) X. { ~P U. ran A } ) ) ) /\ A C_ ran `' ( f u. ( 1st |` ( ( B \ ran f ) X. { ~P U. ran A } ) ) ) /\ ( `' ( f u. ( 1st |` ( ( B \ ran f ) X. { ~P U. ran A } ) ) ) o. f ) = ( _I |` A ) ) ) |
27 |
19 23 24 26
|
syl3anc |
|- ( ( f : A -1-1-> B /\ B e. _V ) -> ( `' ( f u. ( 1st |` ( ( B \ ran f ) X. { ~P U. ran A } ) ) ) : B -1-1-onto-> ran `' ( f u. ( 1st |` ( ( B \ ran f ) X. { ~P U. ran A } ) ) ) /\ A C_ ran `' ( f u. ( 1st |` ( ( B \ ran f ) X. { ~P U. ran A } ) ) ) /\ ( `' ( f u. ( 1st |` ( ( B \ ran f ) X. { ~P U. ran A } ) ) ) o. f ) = ( _I |` A ) ) ) |
28 |
27
|
simp2d |
|- ( ( f : A -1-1-> B /\ B e. _V ) -> A C_ ran `' ( f u. ( 1st |` ( ( B \ ran f ) X. { ~P U. ran A } ) ) ) ) |
29 |
27
|
simp1d |
|- ( ( f : A -1-1-> B /\ B e. _V ) -> `' ( f u. ( 1st |` ( ( B \ ran f ) X. { ~P U. ran A } ) ) ) : B -1-1-onto-> ran `' ( f u. ( 1st |` ( ( B \ ran f ) X. { ~P U. ran A } ) ) ) ) |
30 |
|
f1oen3g |
|- ( ( `' ( f u. ( 1st |` ( ( B \ ran f ) X. { ~P U. ran A } ) ) ) e. _V /\ `' ( f u. ( 1st |` ( ( B \ ran f ) X. { ~P U. ran A } ) ) ) : B -1-1-onto-> ran `' ( f u. ( 1st |` ( ( B \ ran f ) X. { ~P U. ran A } ) ) ) ) -> B ~~ ran `' ( f u. ( 1st |` ( ( B \ ran f ) X. { ~P U. ran A } ) ) ) ) |
31 |
16 29 30
|
syl2anc |
|- ( ( f : A -1-1-> B /\ B e. _V ) -> B ~~ ran `' ( f u. ( 1st |` ( ( B \ ran f ) X. { ~P U. ran A } ) ) ) ) |
32 |
28 31
|
jca |
|- ( ( f : A -1-1-> B /\ B e. _V ) -> ( A C_ ran `' ( f u. ( 1st |` ( ( B \ ran f ) X. { ~P U. ran A } ) ) ) /\ B ~~ ran `' ( f u. ( 1st |` ( ( B \ ran f ) X. { ~P U. ran A } ) ) ) ) ) |
33 |
|
sseq2 |
|- ( x = ran `' ( f u. ( 1st |` ( ( B \ ran f ) X. { ~P U. ran A } ) ) ) -> ( A C_ x <-> A C_ ran `' ( f u. ( 1st |` ( ( B \ ran f ) X. { ~P U. ran A } ) ) ) ) ) |
34 |
|
breq2 |
|- ( x = ran `' ( f u. ( 1st |` ( ( B \ ran f ) X. { ~P U. ran A } ) ) ) -> ( B ~~ x <-> B ~~ ran `' ( f u. ( 1st |` ( ( B \ ran f ) X. { ~P U. ran A } ) ) ) ) ) |
35 |
33 34
|
anbi12d |
|- ( x = ran `' ( f u. ( 1st |` ( ( B \ ran f ) X. { ~P U. ran A } ) ) ) -> ( ( A C_ x /\ B ~~ x ) <-> ( A C_ ran `' ( f u. ( 1st |` ( ( B \ ran f ) X. { ~P U. ran A } ) ) ) /\ B ~~ ran `' ( f u. ( 1st |` ( ( B \ ran f ) X. { ~P U. ran A } ) ) ) ) ) ) |
36 |
18 32 35
|
spcedv |
|- ( ( f : A -1-1-> B /\ B e. _V ) -> E. x ( A C_ x /\ B ~~ x ) ) |
37 |
36
|
ex |
|- ( f : A -1-1-> B -> ( B e. _V -> E. x ( A C_ x /\ B ~~ x ) ) ) |
38 |
37
|
exlimiv |
|- ( E. f f : A -1-1-> B -> ( B e. _V -> E. x ( A C_ x /\ B ~~ x ) ) ) |
39 |
1 3 38
|
sylc |
|- ( A ~<_ B -> E. x ( A C_ x /\ B ~~ x ) ) |