Step |
Hyp |
Ref |
Expression |
1 |
|
f1f |
|- ( F : A -1-1-> B -> F : A --> B ) |
2 |
|
fex2 |
|- ( ( F : A --> B /\ A e. V /\ B e. W ) -> F e. _V ) |
3 |
1 2
|
syl3an1 |
|- ( ( F : A -1-1-> B /\ A e. V /\ B e. W ) -> F e. _V ) |
4 |
|
f1stres |
|- ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) : ( ( B \ ran F ) X. { ~P U. ran A } ) --> ( B \ ran F ) |
5 |
|
difexg |
|- ( B e. W -> ( B \ ran F ) e. _V ) |
6 |
5
|
3ad2ant3 |
|- ( ( F : A -1-1-> B /\ A e. V /\ B e. W ) -> ( B \ ran F ) e. _V ) |
7 |
|
snex |
|- { ~P U. ran A } e. _V |
8 |
|
xpexg |
|- ( ( ( B \ ran F ) e. _V /\ { ~P U. ran A } e. _V ) -> ( ( B \ ran F ) X. { ~P U. ran A } ) e. _V ) |
9 |
6 7 8
|
sylancl |
|- ( ( F : A -1-1-> B /\ A e. V /\ B e. W ) -> ( ( B \ ran F ) X. { ~P U. ran A } ) e. _V ) |
10 |
|
fex2 |
|- ( ( ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) : ( ( B \ ran F ) X. { ~P U. ran A } ) --> ( B \ ran F ) /\ ( ( B \ ran F ) X. { ~P U. ran A } ) e. _V /\ ( B \ ran F ) e. _V ) -> ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) e. _V ) |
11 |
4 9 6 10
|
mp3an2i |
|- ( ( F : A -1-1-> B /\ A e. V /\ B e. W ) -> ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) e. _V ) |
12 |
|
unexg |
|- ( ( F e. _V /\ ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) e. _V ) -> ( F u. ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) e. _V ) |
13 |
3 11 12
|
syl2anc |
|- ( ( F : A -1-1-> B /\ A e. V /\ B e. W ) -> ( F u. ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) e. _V ) |
14 |
|
cnvexg |
|- ( ( F u. ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) e. _V -> `' ( F u. ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) e. _V ) |
15 |
13 14
|
syl |
|- ( ( F : A -1-1-> B /\ A e. V /\ B e. W ) -> `' ( F u. ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) e. _V ) |
16 |
|
eqid |
|- `' ( F u. ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) = `' ( F u. ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) |
17 |
16
|
domss2 |
|- ( ( F : A -1-1-> B /\ A e. V /\ B e. W ) -> ( `' ( F u. ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) : B -1-1-onto-> ran `' ( F u. ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) /\ A C_ ran `' ( F u. ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) /\ ( `' ( F u. ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) o. F ) = ( _I |` A ) ) ) |
18 |
17
|
simp1d |
|- ( ( F : A -1-1-> B /\ A e. V /\ B e. W ) -> `' ( F u. ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) : B -1-1-onto-> ran `' ( F u. ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) ) |
19 |
|
f1of1 |
|- ( `' ( F u. ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) : B -1-1-onto-> ran `' ( F u. ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) -> `' ( F u. ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) : B -1-1-> ran `' ( F u. ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) ) |
20 |
18 19
|
syl |
|- ( ( F : A -1-1-> B /\ A e. V /\ B e. W ) -> `' ( F u. ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) : B -1-1-> ran `' ( F u. ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) ) |
21 |
|
ssv |
|- ran `' ( F u. ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) C_ _V |
22 |
|
f1ss |
|- ( ( `' ( F u. ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) : B -1-1-> ran `' ( F u. ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) /\ ran `' ( F u. ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) C_ _V ) -> `' ( F u. ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) : B -1-1-> _V ) |
23 |
20 21 22
|
sylancl |
|- ( ( F : A -1-1-> B /\ A e. V /\ B e. W ) -> `' ( F u. ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) : B -1-1-> _V ) |
24 |
17
|
simp3d |
|- ( ( F : A -1-1-> B /\ A e. V /\ B e. W ) -> ( `' ( F u. ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) o. F ) = ( _I |` A ) ) |
25 |
23 24
|
jca |
|- ( ( F : A -1-1-> B /\ A e. V /\ B e. W ) -> ( `' ( F u. ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) : B -1-1-> _V /\ ( `' ( F u. ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) o. F ) = ( _I |` A ) ) ) |
26 |
|
f1eq1 |
|- ( g = `' ( F u. ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) -> ( g : B -1-1-> _V <-> `' ( F u. ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) : B -1-1-> _V ) ) |
27 |
|
coeq1 |
|- ( g = `' ( F u. ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) -> ( g o. F ) = ( `' ( F u. ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) o. F ) ) |
28 |
27
|
eqeq1d |
|- ( g = `' ( F u. ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) -> ( ( g o. F ) = ( _I |` A ) <-> ( `' ( F u. ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) o. F ) = ( _I |` A ) ) ) |
29 |
26 28
|
anbi12d |
|- ( g = `' ( F u. ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) -> ( ( g : B -1-1-> _V /\ ( g o. F ) = ( _I |` A ) ) <-> ( `' ( F u. ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) : B -1-1-> _V /\ ( `' ( F u. ( 1st |` ( ( B \ ran F ) X. { ~P U. ran A } ) ) ) o. F ) = ( _I |` A ) ) ) ) |
30 |
15 25 29
|
spcedv |
|- ( ( F : A -1-1-> B /\ A e. V /\ B e. W ) -> E. g ( g : B -1-1-> _V /\ ( g o. F ) = ( _I |` A ) ) ) |