Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
|- ( ( A C_ B /\ B ~<_ C ) -> B ~<_ C ) |
2 |
|
reldom |
|- Rel ~<_ |
3 |
2
|
brrelex12i |
|- ( B ~<_ C -> ( B e. _V /\ C e. _V ) ) |
4 |
|
simpl |
|- ( ( A C_ B /\ ( B e. _V /\ C e. _V ) ) -> A C_ B ) |
5 |
|
ssexg |
|- ( ( A C_ B /\ B e. _V ) -> A e. _V ) |
6 |
5
|
adantrr |
|- ( ( A C_ B /\ ( B e. _V /\ C e. _V ) ) -> A e. _V ) |
7 |
|
simprr |
|- ( ( A C_ B /\ ( B e. _V /\ C e. _V ) ) -> C e. _V ) |
8 |
4 6 7
|
jca32 |
|- ( ( A C_ B /\ ( B e. _V /\ C e. _V ) ) -> ( A C_ B /\ ( A e. _V /\ C e. _V ) ) ) |
9 |
3 8
|
sylan2 |
|- ( ( A C_ B /\ B ~<_ C ) -> ( A C_ B /\ ( A e. _V /\ C e. _V ) ) ) |
10 |
|
brdomi |
|- ( B ~<_ C -> E. f f : B -1-1-> C ) |
11 |
|
f1ssres |
|- ( ( f : B -1-1-> C /\ A C_ B ) -> ( f |` A ) : A -1-1-> C ) |
12 |
|
vex |
|- f e. _V |
13 |
12
|
resex |
|- ( f |` A ) e. _V |
14 |
|
f1dom4g |
|- ( ( ( ( f |` A ) e. _V /\ A e. _V /\ C e. _V ) /\ ( f |` A ) : A -1-1-> C ) -> A ~<_ C ) |
15 |
13 14
|
mp3anl1 |
|- ( ( ( A e. _V /\ C e. _V ) /\ ( f |` A ) : A -1-1-> C ) -> A ~<_ C ) |
16 |
15
|
ancoms |
|- ( ( ( f |` A ) : A -1-1-> C /\ ( A e. _V /\ C e. _V ) ) -> A ~<_ C ) |
17 |
11 16
|
sylan |
|- ( ( ( f : B -1-1-> C /\ A C_ B ) /\ ( A e. _V /\ C e. _V ) ) -> A ~<_ C ) |
18 |
17
|
expl |
|- ( f : B -1-1-> C -> ( ( A C_ B /\ ( A e. _V /\ C e. _V ) ) -> A ~<_ C ) ) |
19 |
18
|
exlimiv |
|- ( E. f f : B -1-1-> C -> ( ( A C_ B /\ ( A e. _V /\ C e. _V ) ) -> A ~<_ C ) ) |
20 |
10 19
|
syl |
|- ( B ~<_ C -> ( ( A C_ B /\ ( A e. _V /\ C e. _V ) ) -> A ~<_ C ) ) |
21 |
1 9 20
|
sylc |
|- ( ( A C_ B /\ B ~<_ C ) -> A ~<_ C ) |