| Step | Hyp | Ref | Expression | 
						
							| 1 |  | brdomi |  |-  ( A ~<_ B -> E. f f : A -1-1-> B ) | 
						
							| 2 | 1 | 3ad2ant3 |  |-  ( ( C e. V /\ B C_ C /\ A ~<_ B ) -> E. f f : A -1-1-> B ) | 
						
							| 3 |  | simp2 |  |-  ( ( C e. V /\ B C_ C /\ A ~<_ B ) -> B C_ C ) | 
						
							| 4 |  | reldom |  |-  Rel ~<_ | 
						
							| 5 | 4 | brrelex1i |  |-  ( A ~<_ B -> A e. _V ) | 
						
							| 6 | 5 | 3ad2ant3 |  |-  ( ( C e. V /\ B C_ C /\ A ~<_ B ) -> A e. _V ) | 
						
							| 7 |  | simp1 |  |-  ( ( C e. V /\ B C_ C /\ A ~<_ B ) -> C e. V ) | 
						
							| 8 | 3 6 7 | jca32 |  |-  ( ( C e. V /\ B C_ C /\ A ~<_ B ) -> ( B C_ C /\ ( A e. _V /\ C e. V ) ) ) | 
						
							| 9 |  | f1ss |  |-  ( ( f : A -1-1-> B /\ B C_ C ) -> f : A -1-1-> C ) | 
						
							| 10 |  | vex |  |-  f e. _V | 
						
							| 11 |  | f1dom4g |  |-  ( ( ( f e. _V /\ A e. _V /\ C e. V ) /\ f : A -1-1-> C ) -> A ~<_ C ) | 
						
							| 12 | 10 11 | mp3anl1 |  |-  ( ( ( A e. _V /\ C e. V ) /\ f : A -1-1-> C ) -> A ~<_ C ) | 
						
							| 13 | 12 | ancoms |  |-  ( ( f : A -1-1-> C /\ ( A e. _V /\ C e. V ) ) -> A ~<_ C ) | 
						
							| 14 | 9 13 | sylan |  |-  ( ( ( f : A -1-1-> B /\ B C_ C ) /\ ( A e. _V /\ C e. V ) ) -> A ~<_ C ) | 
						
							| 15 | 14 | expl |  |-  ( f : A -1-1-> B -> ( ( B C_ C /\ ( A e. _V /\ C e. V ) ) -> A ~<_ C ) ) | 
						
							| 16 | 15 | exlimiv |  |-  ( E. f f : A -1-1-> B -> ( ( B C_ C /\ ( A e. _V /\ C e. V ) ) -> A ~<_ C ) ) | 
						
							| 17 | 2 8 16 | sylc |  |-  ( ( C e. V /\ B C_ C /\ A ~<_ B ) -> A ~<_ C ) |