Description: Transitivity of dominance relation for finite sets, proved without using the Axiom of Power Sets (unlike domtr ). (Contributed by BTernaryTau, 24-Nov-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | domtrfir | |- ( ( C e. Fin /\ A ~<_ B /\ B ~<_ C ) -> A ~<_ C ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | domfi | |- ( ( C e. Fin /\ B ~<_ C ) -> B e. Fin ) |
|
2 | 1 | 3adant2 | |- ( ( C e. Fin /\ A ~<_ B /\ B ~<_ C ) -> B e. Fin ) |
3 | domtrfi | |- ( ( B e. Fin /\ A ~<_ B /\ B ~<_ C ) -> A ~<_ C ) |
|
4 | 2 3 | syld3an1 | |- ( ( C e. Fin /\ A ~<_ B /\ B ~<_ C ) -> A ~<_ C ) |