Metamath Proof Explorer


Theorem domtrfir

Description: Transitivity of dominance relation for finite sets, proved without using the Axiom of Power Sets (unlike domtr ). (Contributed by BTernaryTau, 24-Nov-2024)

Ref Expression
Assertion domtrfir
|- ( ( C e. Fin /\ A ~<_ B /\ B ~<_ C ) -> A ~<_ C )

Proof

Step Hyp Ref Expression
1 domfi
 |-  ( ( C e. Fin /\ B ~<_ C ) -> B e. Fin )
2 1 3adant2
 |-  ( ( C e. Fin /\ A ~<_ B /\ B ~<_ C ) -> B e. Fin )
3 domtrfi
 |-  ( ( B e. Fin /\ A ~<_ B /\ B ~<_ C ) -> A ~<_ C )
4 2 3 syld3an1
 |-  ( ( C e. Fin /\ A ~<_ B /\ B ~<_ C ) -> A ~<_ C )