Description: Transitivity of dominance relation for finite sets, proved without using the Axiom of Power Sets (unlike domtr ). (Contributed by BTernaryTau, 24-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | domtrfir | |- ( ( C e. Fin /\ A ~<_ B /\ B ~<_ C ) -> A ~<_ C ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | domfi | |- ( ( C e. Fin /\ B ~<_ C ) -> B e. Fin ) | |
| 2 | 1 | 3adant2 | |- ( ( C e. Fin /\ A ~<_ B /\ B ~<_ C ) -> B e. Fin ) | 
| 3 | domtrfi | |- ( ( B e. Fin /\ A ~<_ B /\ B ~<_ C ) -> A ~<_ C ) | |
| 4 | 2 3 | syld3an1 | |- ( ( C e. Fin /\ A ~<_ B /\ B ~<_ C ) -> A ~<_ C ) |