Description: Transitivity of dominance relation for finite sets, proved without using the Axiom of Power Sets (unlike domtr ). (Contributed by BTernaryTau, 24-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | domtrfir | |- ( ( C e. Fin /\ A ~<_ B /\ B ~<_ C ) -> A ~<_ C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | domfi | |- ( ( C e. Fin /\ B ~<_ C ) -> B e. Fin ) |
|
| 2 | 1 | 3adant2 | |- ( ( C e. Fin /\ A ~<_ B /\ B ~<_ C ) -> B e. Fin ) |
| 3 | domtrfi | |- ( ( B e. Fin /\ A ~<_ B /\ B ~<_ C ) -> A ~<_ C ) |
|
| 4 | 2 3 | syld3an1 | |- ( ( C e. Fin /\ A ~<_ B /\ B ~<_ C ) -> A ~<_ C ) |