Step |
Hyp |
Ref |
Expression |
1 |
|
domtriom.1 |
|- A e. _V |
2 |
|
domnsym |
|- ( _om ~<_ A -> -. A ~< _om ) |
3 |
|
isfinite |
|- ( A e. Fin <-> A ~< _om ) |
4 |
|
eqid |
|- { y | ( y C_ A /\ y ~~ ~P n ) } = { y | ( y C_ A /\ y ~~ ~P n ) } |
5 |
|
fveq2 |
|- ( m = n -> ( b ` m ) = ( b ` n ) ) |
6 |
|
fveq2 |
|- ( j = k -> ( b ` j ) = ( b ` k ) ) |
7 |
6
|
cbviunv |
|- U_ j e. m ( b ` j ) = U_ k e. m ( b ` k ) |
8 |
|
iuneq1 |
|- ( m = n -> U_ k e. m ( b ` k ) = U_ k e. n ( b ` k ) ) |
9 |
7 8
|
eqtrid |
|- ( m = n -> U_ j e. m ( b ` j ) = U_ k e. n ( b ` k ) ) |
10 |
5 9
|
difeq12d |
|- ( m = n -> ( ( b ` m ) \ U_ j e. m ( b ` j ) ) = ( ( b ` n ) \ U_ k e. n ( b ` k ) ) ) |
11 |
10
|
cbvmptv |
|- ( m e. _om |-> ( ( b ` m ) \ U_ j e. m ( b ` j ) ) ) = ( n e. _om |-> ( ( b ` n ) \ U_ k e. n ( b ` k ) ) ) |
12 |
1 4 11
|
domtriomlem |
|- ( -. A e. Fin -> _om ~<_ A ) |
13 |
3 12
|
sylnbir |
|- ( -. A ~< _om -> _om ~<_ A ) |
14 |
2 13
|
impbii |
|- ( _om ~<_ A <-> -. A ~< _om ) |