Metamath Proof Explorer


Theorem domtriom

Description: Trichotomy of equinumerosity for _om , proven using countable choice. Equivalently, all Dedekind-finite sets (as in isfin4-2 ) are finite in the usual sense and conversely. (Contributed by Mario Carneiro, 9-Feb-2013)

Ref Expression
Hypothesis domtriom.1
|- A e. _V
Assertion domtriom
|- ( _om ~<_ A <-> -. A ~< _om )

Proof

Step Hyp Ref Expression
1 domtriom.1
 |-  A e. _V
2 domnsym
 |-  ( _om ~<_ A -> -. A ~< _om )
3 isfinite
 |-  ( A e. Fin <-> A ~< _om )
4 eqid
 |-  { y | ( y C_ A /\ y ~~ ~P n ) } = { y | ( y C_ A /\ y ~~ ~P n ) }
5 fveq2
 |-  ( m = n -> ( b ` m ) = ( b ` n ) )
6 fveq2
 |-  ( j = k -> ( b ` j ) = ( b ` k ) )
7 6 cbviunv
 |-  U_ j e. m ( b ` j ) = U_ k e. m ( b ` k )
8 iuneq1
 |-  ( m = n -> U_ k e. m ( b ` k ) = U_ k e. n ( b ` k ) )
9 7 8 eqtrid
 |-  ( m = n -> U_ j e. m ( b ` j ) = U_ k e. n ( b ` k ) )
10 5 9 difeq12d
 |-  ( m = n -> ( ( b ` m ) \ U_ j e. m ( b ` j ) ) = ( ( b ` n ) \ U_ k e. n ( b ` k ) ) )
11 10 cbvmptv
 |-  ( m e. _om |-> ( ( b ` m ) \ U_ j e. m ( b ` j ) ) ) = ( n e. _om |-> ( ( b ` n ) \ U_ k e. n ( b ` k ) ) )
12 1 4 11 domtriomlem
 |-  ( -. A e. Fin -> _om ~<_ A )
13 3 12 sylnbir
 |-  ( -. A ~< _om -> _om ~<_ A )
14 2 13 impbii
 |-  ( _om ~<_ A <-> -. A ~< _om )