Metamath Proof Explorer


Theorem domtriord

Description: Dominance is trichotomous in the restricted case of ordinal numbers. (Contributed by Jeff Hankins, 24-Oct-2009)

Ref Expression
Assertion domtriord
|- ( ( A e. On /\ B e. On ) -> ( A ~<_ B <-> -. B ~< A ) )

Proof

Step Hyp Ref Expression
1 sbth
 |-  ( ( B ~<_ A /\ A ~<_ B ) -> B ~~ A )
2 1 expcom
 |-  ( A ~<_ B -> ( B ~<_ A -> B ~~ A ) )
3 2 a1i
 |-  ( ( A e. On /\ B e. On ) -> ( A ~<_ B -> ( B ~<_ A -> B ~~ A ) ) )
4 iman
 |-  ( ( B ~<_ A -> B ~~ A ) <-> -. ( B ~<_ A /\ -. B ~~ A ) )
5 brsdom
 |-  ( B ~< A <-> ( B ~<_ A /\ -. B ~~ A ) )
6 4 5 xchbinxr
 |-  ( ( B ~<_ A -> B ~~ A ) <-> -. B ~< A )
7 3 6 syl6ib
 |-  ( ( A e. On /\ B e. On ) -> ( A ~<_ B -> -. B ~< A ) )
8 onelss
 |-  ( B e. On -> ( A e. B -> A C_ B ) )
9 ssdomg
 |-  ( B e. On -> ( A C_ B -> A ~<_ B ) )
10 8 9 syld
 |-  ( B e. On -> ( A e. B -> A ~<_ B ) )
11 10 adantl
 |-  ( ( A e. On /\ B e. On ) -> ( A e. B -> A ~<_ B ) )
12 11 con3d
 |-  ( ( A e. On /\ B e. On ) -> ( -. A ~<_ B -> -. A e. B ) )
13 ontri1
 |-  ( ( B e. On /\ A e. On ) -> ( B C_ A <-> -. A e. B ) )
14 13 ancoms
 |-  ( ( A e. On /\ B e. On ) -> ( B C_ A <-> -. A e. B ) )
15 12 14 sylibrd
 |-  ( ( A e. On /\ B e. On ) -> ( -. A ~<_ B -> B C_ A ) )
16 ssdomg
 |-  ( A e. On -> ( B C_ A -> B ~<_ A ) )
17 16 adantr
 |-  ( ( A e. On /\ B e. On ) -> ( B C_ A -> B ~<_ A ) )
18 15 17 syld
 |-  ( ( A e. On /\ B e. On ) -> ( -. A ~<_ B -> B ~<_ A ) )
19 ensym
 |-  ( B ~~ A -> A ~~ B )
20 endom
 |-  ( A ~~ B -> A ~<_ B )
21 19 20 syl
 |-  ( B ~~ A -> A ~<_ B )
22 21 con3i
 |-  ( -. A ~<_ B -> -. B ~~ A )
23 18 22 jca2
 |-  ( ( A e. On /\ B e. On ) -> ( -. A ~<_ B -> ( B ~<_ A /\ -. B ~~ A ) ) )
24 23 5 syl6ibr
 |-  ( ( A e. On /\ B e. On ) -> ( -. A ~<_ B -> B ~< A ) )
25 24 con1d
 |-  ( ( A e. On /\ B e. On ) -> ( -. B ~< A -> A ~<_ B ) )
26 7 25 impbid
 |-  ( ( A e. On /\ B e. On ) -> ( A ~<_ B <-> -. B ~< A ) )