Step |
Hyp |
Ref |
Expression |
1 |
|
sbth |
|- ( ( B ~<_ A /\ A ~<_ B ) -> B ~~ A ) |
2 |
1
|
expcom |
|- ( A ~<_ B -> ( B ~<_ A -> B ~~ A ) ) |
3 |
2
|
a1i |
|- ( ( A e. On /\ B e. On ) -> ( A ~<_ B -> ( B ~<_ A -> B ~~ A ) ) ) |
4 |
|
iman |
|- ( ( B ~<_ A -> B ~~ A ) <-> -. ( B ~<_ A /\ -. B ~~ A ) ) |
5 |
|
brsdom |
|- ( B ~< A <-> ( B ~<_ A /\ -. B ~~ A ) ) |
6 |
4 5
|
xchbinxr |
|- ( ( B ~<_ A -> B ~~ A ) <-> -. B ~< A ) |
7 |
3 6
|
syl6ib |
|- ( ( A e. On /\ B e. On ) -> ( A ~<_ B -> -. B ~< A ) ) |
8 |
|
onelss |
|- ( B e. On -> ( A e. B -> A C_ B ) ) |
9 |
|
ssdomg |
|- ( B e. On -> ( A C_ B -> A ~<_ B ) ) |
10 |
8 9
|
syld |
|- ( B e. On -> ( A e. B -> A ~<_ B ) ) |
11 |
10
|
adantl |
|- ( ( A e. On /\ B e. On ) -> ( A e. B -> A ~<_ B ) ) |
12 |
11
|
con3d |
|- ( ( A e. On /\ B e. On ) -> ( -. A ~<_ B -> -. A e. B ) ) |
13 |
|
ontri1 |
|- ( ( B e. On /\ A e. On ) -> ( B C_ A <-> -. A e. B ) ) |
14 |
13
|
ancoms |
|- ( ( A e. On /\ B e. On ) -> ( B C_ A <-> -. A e. B ) ) |
15 |
12 14
|
sylibrd |
|- ( ( A e. On /\ B e. On ) -> ( -. A ~<_ B -> B C_ A ) ) |
16 |
|
ssdomg |
|- ( A e. On -> ( B C_ A -> B ~<_ A ) ) |
17 |
16
|
adantr |
|- ( ( A e. On /\ B e. On ) -> ( B C_ A -> B ~<_ A ) ) |
18 |
15 17
|
syld |
|- ( ( A e. On /\ B e. On ) -> ( -. A ~<_ B -> B ~<_ A ) ) |
19 |
|
ensym |
|- ( B ~~ A -> A ~~ B ) |
20 |
|
endom |
|- ( A ~~ B -> A ~<_ B ) |
21 |
19 20
|
syl |
|- ( B ~~ A -> A ~<_ B ) |
22 |
21
|
con3i |
|- ( -. A ~<_ B -> -. B ~~ A ) |
23 |
18 22
|
jca2 |
|- ( ( A e. On /\ B e. On ) -> ( -. A ~<_ B -> ( B ~<_ A /\ -. B ~~ A ) ) ) |
24 |
23 5
|
syl6ibr |
|- ( ( A e. On /\ B e. On ) -> ( -. A ~<_ B -> B ~< A ) ) |
25 |
24
|
con1d |
|- ( ( A e. On /\ B e. On ) -> ( -. B ~< A -> A ~<_ B ) ) |
26 |
7 25
|
impbid |
|- ( ( A e. On /\ B e. On ) -> ( A ~<_ B <-> -. B ~< A ) ) |