| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sdom0 |  |-  -. A ~< (/) | 
						
							| 2 |  | breq2 |  |-  ( B = (/) -> ( A ~< B <-> A ~< (/) ) ) | 
						
							| 3 | 1 2 | mtbiri |  |-  ( B = (/) -> -. A ~< B ) | 
						
							| 4 | 3 | con2i |  |-  ( A ~< B -> -. B = (/) ) | 
						
							| 5 |  | neq0 |  |-  ( -. B = (/) <-> E. z z e. B ) | 
						
							| 6 | 4 5 | sylib |  |-  ( A ~< B -> E. z z e. B ) | 
						
							| 7 |  | domdifsn |  |-  ( A ~< B -> A ~<_ ( B \ { z } ) ) | 
						
							| 8 | 7 | adantr |  |-  ( ( A ~< B /\ z e. B ) -> A ~<_ ( B \ { z } ) ) | 
						
							| 9 |  | en2sn |  |-  ( ( C e. _V /\ z e. _V ) -> { C } ~~ { z } ) | 
						
							| 10 | 9 | elvd |  |-  ( C e. _V -> { C } ~~ { z } ) | 
						
							| 11 |  | endom |  |-  ( { C } ~~ { z } -> { C } ~<_ { z } ) | 
						
							| 12 | 10 11 | syl |  |-  ( C e. _V -> { C } ~<_ { z } ) | 
						
							| 13 |  | snprc |  |-  ( -. C e. _V <-> { C } = (/) ) | 
						
							| 14 | 13 | biimpi |  |-  ( -. C e. _V -> { C } = (/) ) | 
						
							| 15 |  | vsnex |  |-  { z } e. _V | 
						
							| 16 | 15 | 0dom |  |-  (/) ~<_ { z } | 
						
							| 17 | 14 16 | eqbrtrdi |  |-  ( -. C e. _V -> { C } ~<_ { z } ) | 
						
							| 18 | 12 17 | pm2.61i |  |-  { C } ~<_ { z } | 
						
							| 19 |  | disjdifr |  |-  ( ( B \ { z } ) i^i { z } ) = (/) | 
						
							| 20 |  | undom |  |-  ( ( ( A ~<_ ( B \ { z } ) /\ { C } ~<_ { z } ) /\ ( ( B \ { z } ) i^i { z } ) = (/) ) -> ( A u. { C } ) ~<_ ( ( B \ { z } ) u. { z } ) ) | 
						
							| 21 | 19 20 | mpan2 |  |-  ( ( A ~<_ ( B \ { z } ) /\ { C } ~<_ { z } ) -> ( A u. { C } ) ~<_ ( ( B \ { z } ) u. { z } ) ) | 
						
							| 22 | 8 18 21 | sylancl |  |-  ( ( A ~< B /\ z e. B ) -> ( A u. { C } ) ~<_ ( ( B \ { z } ) u. { z } ) ) | 
						
							| 23 |  | uncom |  |-  ( ( B \ { z } ) u. { z } ) = ( { z } u. ( B \ { z } ) ) | 
						
							| 24 |  | simpr |  |-  ( ( A ~< B /\ z e. B ) -> z e. B ) | 
						
							| 25 | 24 | snssd |  |-  ( ( A ~< B /\ z e. B ) -> { z } C_ B ) | 
						
							| 26 |  | undif |  |-  ( { z } C_ B <-> ( { z } u. ( B \ { z } ) ) = B ) | 
						
							| 27 | 25 26 | sylib |  |-  ( ( A ~< B /\ z e. B ) -> ( { z } u. ( B \ { z } ) ) = B ) | 
						
							| 28 | 23 27 | eqtrid |  |-  ( ( A ~< B /\ z e. B ) -> ( ( B \ { z } ) u. { z } ) = B ) | 
						
							| 29 | 22 28 | breqtrd |  |-  ( ( A ~< B /\ z e. B ) -> ( A u. { C } ) ~<_ B ) | 
						
							| 30 | 6 29 | exlimddv |  |-  ( A ~< B -> ( A u. { C } ) ~<_ B ) |