Metamath Proof Explorer


Theorem domunsn

Description: Dominance over a set with one element added. (Contributed by Mario Carneiro, 18-May-2015)

Ref Expression
Assertion domunsn
|- ( A ~< B -> ( A u. { C } ) ~<_ B )

Proof

Step Hyp Ref Expression
1 sdom0
 |-  -. A ~< (/)
2 breq2
 |-  ( B = (/) -> ( A ~< B <-> A ~< (/) ) )
3 1 2 mtbiri
 |-  ( B = (/) -> -. A ~< B )
4 3 con2i
 |-  ( A ~< B -> -. B = (/) )
5 neq0
 |-  ( -. B = (/) <-> E. z z e. B )
6 4 5 sylib
 |-  ( A ~< B -> E. z z e. B )
7 domdifsn
 |-  ( A ~< B -> A ~<_ ( B \ { z } ) )
8 7 adantr
 |-  ( ( A ~< B /\ z e. B ) -> A ~<_ ( B \ { z } ) )
9 en2sn
 |-  ( ( C e. _V /\ z e. _V ) -> { C } ~~ { z } )
10 9 elvd
 |-  ( C e. _V -> { C } ~~ { z } )
11 endom
 |-  ( { C } ~~ { z } -> { C } ~<_ { z } )
12 10 11 syl
 |-  ( C e. _V -> { C } ~<_ { z } )
13 snprc
 |-  ( -. C e. _V <-> { C } = (/) )
14 13 biimpi
 |-  ( -. C e. _V -> { C } = (/) )
15 snex
 |-  { z } e. _V
16 15 0dom
 |-  (/) ~<_ { z }
17 14 16 eqbrtrdi
 |-  ( -. C e. _V -> { C } ~<_ { z } )
18 12 17 pm2.61i
 |-  { C } ~<_ { z }
19 disjdifr
 |-  ( ( B \ { z } ) i^i { z } ) = (/)
20 undom
 |-  ( ( ( A ~<_ ( B \ { z } ) /\ { C } ~<_ { z } ) /\ ( ( B \ { z } ) i^i { z } ) = (/) ) -> ( A u. { C } ) ~<_ ( ( B \ { z } ) u. { z } ) )
21 19 20 mpan2
 |-  ( ( A ~<_ ( B \ { z } ) /\ { C } ~<_ { z } ) -> ( A u. { C } ) ~<_ ( ( B \ { z } ) u. { z } ) )
22 8 18 21 sylancl
 |-  ( ( A ~< B /\ z e. B ) -> ( A u. { C } ) ~<_ ( ( B \ { z } ) u. { z } ) )
23 uncom
 |-  ( ( B \ { z } ) u. { z } ) = ( { z } u. ( B \ { z } ) )
24 simpr
 |-  ( ( A ~< B /\ z e. B ) -> z e. B )
25 24 snssd
 |-  ( ( A ~< B /\ z e. B ) -> { z } C_ B )
26 undif
 |-  ( { z } C_ B <-> ( { z } u. ( B \ { z } ) ) = B )
27 25 26 sylib
 |-  ( ( A ~< B /\ z e. B ) -> ( { z } u. ( B \ { z } ) ) = B )
28 23 27 eqtrid
 |-  ( ( A ~< B /\ z e. B ) -> ( ( B \ { z } ) u. { z } ) = B )
29 22 28 breqtrd
 |-  ( ( A ~< B /\ z e. B ) -> ( A u. { C } ) ~<_ B )
30 6 29 exlimddv
 |-  ( A ~< B -> ( A u. { C } ) ~<_ B )