Step |
Hyp |
Ref |
Expression |
1 |
|
neqne |
|- ( -. X = (/) -> X =/= (/) ) |
2 |
1
|
adantl |
|- ( ( X ~<_ Y /\ -. X = (/) ) -> X =/= (/) ) |
3 |
|
reldom |
|- Rel ~<_ |
4 |
3
|
brrelex1i |
|- ( X ~<_ Y -> X e. _V ) |
5 |
|
0sdomg |
|- ( X e. _V -> ( (/) ~< X <-> X =/= (/) ) ) |
6 |
4 5
|
syl |
|- ( X ~<_ Y -> ( (/) ~< X <-> X =/= (/) ) ) |
7 |
6
|
adantr |
|- ( ( X ~<_ Y /\ -. X = (/) ) -> ( (/) ~< X <-> X =/= (/) ) ) |
8 |
2 7
|
mpbird |
|- ( ( X ~<_ Y /\ -. X = (/) ) -> (/) ~< X ) |
9 |
|
simpl |
|- ( ( X ~<_ Y /\ -. X = (/) ) -> X ~<_ Y ) |
10 |
|
fodomr |
|- ( ( (/) ~< X /\ X ~<_ Y ) -> E. y y : Y -onto-> X ) |
11 |
8 9 10
|
syl2anc |
|- ( ( X ~<_ Y /\ -. X = (/) ) -> E. y y : Y -onto-> X ) |
12 |
11
|
ex |
|- ( X ~<_ Y -> ( -. X = (/) -> E. y y : Y -onto-> X ) ) |
13 |
12
|
orrd |
|- ( X ~<_ Y -> ( X = (/) \/ E. y y : Y -onto-> X ) ) |
14 |
3
|
brrelex2i |
|- ( X ~<_ Y -> Y e. _V ) |
15 |
|
brwdom |
|- ( Y e. _V -> ( X ~<_* Y <-> ( X = (/) \/ E. y y : Y -onto-> X ) ) ) |
16 |
14 15
|
syl |
|- ( X ~<_ Y -> ( X ~<_* Y <-> ( X = (/) \/ E. y y : Y -onto-> X ) ) ) |
17 |
13 16
|
mpbird |
|- ( X ~<_ Y -> X ~<_* Y ) |