Description: Add a zero in the unit places. (Contributed by Thierry Arnoux, 16-Dec-2021)
Ref | Expression | ||
---|---|---|---|
Hypothesis | dp20h.1 | |- A e. RR+ |
|
Assertion | dp20h | |- _ 0 A = ( A / ; 1 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dp20h.1 | |- A e. RR+ |
|
2 | df-dp2 | |- _ 0 A = ( 0 + ( A / ; 1 0 ) ) |
|
3 | rpcn | |- ( A e. RR+ -> A e. CC ) |
|
4 | 1 3 | ax-mp | |- A e. CC |
5 | 10nn0 | |- ; 1 0 e. NN0 |
|
6 | 5 | nn0cni | |- ; 1 0 e. CC |
7 | 0re | |- 0 e. RR |
|
8 | 10pos | |- 0 < ; 1 0 |
|
9 | 7 8 | gtneii | |- ; 1 0 =/= 0 |
10 | 4 6 9 | divcli | |- ( A / ; 1 0 ) e. CC |
11 | 10 | addid2i | |- ( 0 + ( A / ; 1 0 ) ) = ( A / ; 1 0 ) |
12 | 2 11 | eqtri | |- _ 0 A = ( A / ; 1 0 ) |