Metamath Proof Explorer


Theorem dp20u

Description: Add a zero in the tenths (lower) place. (Contributed by Thierry Arnoux, 16-Dec-2021)

Ref Expression
Hypothesis dp20u.1
|- A e. NN0
Assertion dp20u
|- _ A 0 = A

Proof

Step Hyp Ref Expression
1 dp20u.1
 |-  A e. NN0
2 df-dp2
 |-  _ A 0 = ( A + ( 0 / ; 1 0 ) )
3 10nn0
 |-  ; 1 0 e. NN0
4 3 nn0rei
 |-  ; 1 0 e. RR
5 4 recni
 |-  ; 1 0 e. CC
6 0re
 |-  0 e. RR
7 10pos
 |-  0 < ; 1 0
8 6 7 gtneii
 |-  ; 1 0 =/= 0
9 div0
 |-  ( ( ; 1 0 e. CC /\ ; 1 0 =/= 0 ) -> ( 0 / ; 1 0 ) = 0 )
10 5 8 9 mp2an
 |-  ( 0 / ; 1 0 ) = 0
11 10 oveq2i
 |-  ( A + ( 0 / ; 1 0 ) ) = ( A + 0 )
12 1 nn0cni
 |-  A e. CC
13 12 addid1i
 |-  ( A + 0 ) = A
14 2 11 13 3eqtri
 |-  _ A 0 = A