Metamath Proof Explorer


Theorem dp2clq

Description: Closure for a decimal fraction. (Contributed by Thierry Arnoux, 16-Dec-2021)

Ref Expression
Hypotheses dp2clq.a
|- A e. NN0
dp2clq.b
|- B e. QQ
Assertion dp2clq
|- _ A B e. QQ

Proof

Step Hyp Ref Expression
1 dp2clq.a
 |-  A e. NN0
2 dp2clq.b
 |-  B e. QQ
3 df-dp2
 |-  _ A B = ( A + ( B / ; 1 0 ) )
4 nn0ssq
 |-  NN0 C_ QQ
5 4 1 sselii
 |-  A e. QQ
6 10nn0
 |-  ; 1 0 e. NN0
7 4 6 sselii
 |-  ; 1 0 e. QQ
8 0re
 |-  0 e. RR
9 10pos
 |-  0 < ; 1 0
10 8 9 gtneii
 |-  ; 1 0 =/= 0
11 qdivcl
 |-  ( ( B e. QQ /\ ; 1 0 e. QQ /\ ; 1 0 =/= 0 ) -> ( B / ; 1 0 ) e. QQ )
12 2 7 10 11 mp3an
 |-  ( B / ; 1 0 ) e. QQ
13 qaddcl
 |-  ( ( A e. QQ /\ ( B / ; 1 0 ) e. QQ ) -> ( A + ( B / ; 1 0 ) ) e. QQ )
14 5 12 13 mp2an
 |-  ( A + ( B / ; 1 0 ) ) e. QQ
15 3 14 eqeltri
 |-  _ A B e. QQ