Metamath Proof Explorer
Description: Equality theorem for the decimal expansion constructor. (Contributed by David A. Wheeler, 15-May-2015)
|
|
Ref |
Expression |
|
Hypotheses |
dp2eq1i.1 |
|- A = B |
|
|
dp2eq12i.2 |
|- C = D |
|
Assertion |
dp2eq12i |
|- _ A C = _ B D |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
dp2eq1i.1 |
|- A = B |
2 |
|
dp2eq12i.2 |
|- C = D |
3 |
1
|
dp2eq1i |
|- _ A C = _ B C |
4 |
2
|
dp2eq2i |
|- _ B C = _ B D |
5 |
3 4
|
eqtri |
|- _ A C = _ B D |