Description: Equality theorem for the decimal expansion constructor. (Contributed by David A. Wheeler, 15-May-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | dp2eq2 | |- ( A = B -> _ C A = _ C B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 | |- ( A = B -> ( A / ; 1 0 ) = ( B / ; 1 0 ) ) |
|
2 | 1 | oveq2d | |- ( A = B -> ( C + ( A / ; 1 0 ) ) = ( C + ( B / ; 1 0 ) ) ) |
3 | df-dp2 | |- _ C A = ( C + ( A / ; 1 0 ) ) |
|
4 | df-dp2 | |- _ C B = ( C + ( B / ; 1 0 ) ) |
|
5 | 2 3 4 | 3eqtr4g | |- ( A = B -> _ C A = _ C B ) |