Description: Equality theorem for the decimal expansion constructor. (Contributed by David A. Wheeler, 15-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dp2eq2 | |- ( A = B -> _ C A = _ C B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 | |- ( A = B -> ( A / ; 1 0 ) = ( B / ; 1 0 ) ) |
|
| 2 | 1 | oveq2d | |- ( A = B -> ( C + ( A / ; 1 0 ) ) = ( C + ( B / ; 1 0 ) ) ) |
| 3 | df-dp2 | |- _ C A = ( C + ( A / ; 1 0 ) ) |
|
| 4 | df-dp2 | |- _ C B = ( C + ( B / ; 1 0 ) ) |
|
| 5 | 2 3 4 | 3eqtr4g | |- ( A = B -> _ C A = _ C B ) |