Step |
Hyp |
Ref |
Expression |
1 |
|
dp2lt10.a |
|- A e. NN0 |
2 |
|
dp2lt10.b |
|- B e. RR+ |
3 |
|
dp2lt10.1 |
|- A < ; 1 0 |
4 |
|
dp2lt10.2 |
|- B < ; 1 0 |
5 |
|
df-dp2 |
|- _ A B = ( A + ( B / ; 1 0 ) ) |
6 |
|
9p1e10 |
|- ( 9 + 1 ) = ; 1 0 |
7 |
3 6
|
breqtrri |
|- A < ( 9 + 1 ) |
8 |
1
|
nn0zi |
|- A e. ZZ |
9 |
|
9nn0 |
|- 9 e. NN0 |
10 |
9
|
nn0zi |
|- 9 e. ZZ |
11 |
|
zleltp1 |
|- ( ( A e. ZZ /\ 9 e. ZZ ) -> ( A <_ 9 <-> A < ( 9 + 1 ) ) ) |
12 |
8 10 11
|
mp2an |
|- ( A <_ 9 <-> A < ( 9 + 1 ) ) |
13 |
7 12
|
mpbir |
|- A <_ 9 |
14 |
|
rpssre |
|- RR+ C_ RR |
15 |
14 2
|
sselii |
|- B e. RR |
16 |
|
10re |
|- ; 1 0 e. RR |
17 |
|
10pos |
|- 0 < ; 1 0 |
18 |
16 17
|
elrpii |
|- ; 1 0 e. RR+ |
19 |
|
divlt1lt |
|- ( ( B e. RR /\ ; 1 0 e. RR+ ) -> ( ( B / ; 1 0 ) < 1 <-> B < ; 1 0 ) ) |
20 |
15 18 19
|
mp2an |
|- ( ( B / ; 1 0 ) < 1 <-> B < ; 1 0 ) |
21 |
4 20
|
mpbir |
|- ( B / ; 1 0 ) < 1 |
22 |
1
|
nn0rei |
|- A e. RR |
23 |
|
0re |
|- 0 e. RR |
24 |
23 17
|
gtneii |
|- ; 1 0 =/= 0 |
25 |
15 16 24
|
redivcli |
|- ( B / ; 1 0 ) e. RR |
26 |
22 25
|
pm3.2i |
|- ( A e. RR /\ ( B / ; 1 0 ) e. RR ) |
27 |
|
9re |
|- 9 e. RR |
28 |
|
1re |
|- 1 e. RR |
29 |
27 28
|
pm3.2i |
|- ( 9 e. RR /\ 1 e. RR ) |
30 |
|
leltadd |
|- ( ( ( A e. RR /\ ( B / ; 1 0 ) e. RR ) /\ ( 9 e. RR /\ 1 e. RR ) ) -> ( ( A <_ 9 /\ ( B / ; 1 0 ) < 1 ) -> ( A + ( B / ; 1 0 ) ) < ( 9 + 1 ) ) ) |
31 |
26 29 30
|
mp2an |
|- ( ( A <_ 9 /\ ( B / ; 1 0 ) < 1 ) -> ( A + ( B / ; 1 0 ) ) < ( 9 + 1 ) ) |
32 |
13 21 31
|
mp2an |
|- ( A + ( B / ; 1 0 ) ) < ( 9 + 1 ) |
33 |
32 6
|
breqtri |
|- ( A + ( B / ; 1 0 ) ) < ; 1 0 |
34 |
5 33
|
eqbrtri |
|- _ A B < ; 1 0 |