Step |
Hyp |
Ref |
Expression |
1 |
|
dp3mul10.a |
|- A e. NN0 |
2 |
|
dp3mul10.b |
|- B e. NN0 |
3 |
|
dp3mul10.c |
|- C e. RR |
4 |
2
|
nn0rei |
|- B e. RR |
5 |
|
dp2cl |
|- ( ( B e. RR /\ C e. RR ) -> _ B C e. RR ) |
6 |
4 3 5
|
mp2an |
|- _ B C e. RR |
7 |
1 6
|
dpmul10 |
|- ( ( A . _ B C ) x. ; 1 0 ) = ; A _ B C |
8 |
|
dfdec10 |
|- ; A _ B C = ( ( ; 1 0 x. A ) + _ B C ) |
9 |
|
10nn |
|- ; 1 0 e. NN |
10 |
9
|
nncni |
|- ; 1 0 e. CC |
11 |
1
|
nn0cni |
|- A e. CC |
12 |
10 11
|
mulcli |
|- ( ; 1 0 x. A ) e. CC |
13 |
4
|
recni |
|- B e. CC |
14 |
3
|
recni |
|- C e. CC |
15 |
9
|
nnne0i |
|- ; 1 0 =/= 0 |
16 |
14 10 15
|
divcli |
|- ( C / ; 1 0 ) e. CC |
17 |
12 13 16
|
addassi |
|- ( ( ( ; 1 0 x. A ) + B ) + ( C / ; 1 0 ) ) = ( ( ; 1 0 x. A ) + ( B + ( C / ; 1 0 ) ) ) |
18 |
|
dfdec10 |
|- ; A B = ( ( ; 1 0 x. A ) + B ) |
19 |
18
|
oveq1i |
|- ( ; A B + ( C / ; 1 0 ) ) = ( ( ( ; 1 0 x. A ) + B ) + ( C / ; 1 0 ) ) |
20 |
|
df-dp2 |
|- _ B C = ( B + ( C / ; 1 0 ) ) |
21 |
20
|
oveq2i |
|- ( ( ; 1 0 x. A ) + _ B C ) = ( ( ; 1 0 x. A ) + ( B + ( C / ; 1 0 ) ) ) |
22 |
17 19 21
|
3eqtr4ri |
|- ( ( ; 1 0 x. A ) + _ B C ) = ( ; A B + ( C / ; 1 0 ) ) |
23 |
1 2
|
deccl |
|- ; A B e. NN0 |
24 |
23 3
|
dpval2 |
|- ( ; A B . C ) = ( ; A B + ( C / ; 1 0 ) ) |
25 |
22 24
|
eqtr4i |
|- ( ( ; 1 0 x. A ) + _ B C ) = ( ; A B . C ) |
26 |
7 8 25
|
3eqtri |
|- ( ( A . _ B C ) x. ; 1 0 ) = ( ; A B . C ) |