| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dpadd2.a |
|- A e. NN0 |
| 2 |
|
dpadd2.b |
|- B e. RR+ |
| 3 |
|
dpadd2.c |
|- C e. NN0 |
| 4 |
|
dpadd2.d |
|- D e. RR+ |
| 5 |
|
dpadd2.e |
|- E e. NN0 |
| 6 |
|
dpadd2.f |
|- F e. RR+ |
| 7 |
|
dpadd2.g |
|- G e. NN0 |
| 8 |
|
dpadd2.h |
|- H e. NN0 |
| 9 |
|
dpadd2.i |
|- ( G + H ) = I |
| 10 |
|
dpadd2.1 |
|- ( ( A . B ) + ( C . D ) ) = ( E . F ) |
| 11 |
1
|
nn0rei |
|- A e. RR |
| 12 |
|
rpre |
|- ( B e. RR+ -> B e. RR ) |
| 13 |
2 12
|
ax-mp |
|- B e. RR |
| 14 |
|
dp2cl |
|- ( ( A e. RR /\ B e. RR ) -> _ A B e. RR ) |
| 15 |
11 13 14
|
mp2an |
|- _ A B e. RR |
| 16 |
7 15
|
dpval2 |
|- ( G . _ A B ) = ( G + ( _ A B / ; 1 0 ) ) |
| 17 |
3
|
nn0rei |
|- C e. RR |
| 18 |
|
rpre |
|- ( D e. RR+ -> D e. RR ) |
| 19 |
4 18
|
ax-mp |
|- D e. RR |
| 20 |
|
dp2cl |
|- ( ( C e. RR /\ D e. RR ) -> _ C D e. RR ) |
| 21 |
17 19 20
|
mp2an |
|- _ C D e. RR |
| 22 |
8 21
|
dpval2 |
|- ( H . _ C D ) = ( H + ( _ C D / ; 1 0 ) ) |
| 23 |
16 22
|
oveq12i |
|- ( ( G . _ A B ) + ( H . _ C D ) ) = ( ( G + ( _ A B / ; 1 0 ) ) + ( H + ( _ C D / ; 1 0 ) ) ) |
| 24 |
7
|
nn0cni |
|- G e. CC |
| 25 |
15
|
recni |
|- _ A B e. CC |
| 26 |
|
10nn |
|- ; 1 0 e. NN |
| 27 |
26
|
nncni |
|- ; 1 0 e. CC |
| 28 |
26
|
nnne0i |
|- ; 1 0 =/= 0 |
| 29 |
25 27 28
|
divcli |
|- ( _ A B / ; 1 0 ) e. CC |
| 30 |
8
|
nn0cni |
|- H e. CC |
| 31 |
21
|
recni |
|- _ C D e. CC |
| 32 |
31 27 28
|
divcli |
|- ( _ C D / ; 1 0 ) e. CC |
| 33 |
24 29 30 32
|
add4i |
|- ( ( G + ( _ A B / ; 1 0 ) ) + ( H + ( _ C D / ; 1 0 ) ) ) = ( ( G + H ) + ( ( _ A B / ; 1 0 ) + ( _ C D / ; 1 0 ) ) ) |
| 34 |
25 31 27 28
|
divdiri |
|- ( ( _ A B + _ C D ) / ; 1 0 ) = ( ( _ A B / ; 1 0 ) + ( _ C D / ; 1 0 ) ) |
| 35 |
|
dpval |
|- ( ( A e. NN0 /\ B e. RR ) -> ( A . B ) = _ A B ) |
| 36 |
1 13 35
|
mp2an |
|- ( A . B ) = _ A B |
| 37 |
|
dpval |
|- ( ( C e. NN0 /\ D e. RR ) -> ( C . D ) = _ C D ) |
| 38 |
3 19 37
|
mp2an |
|- ( C . D ) = _ C D |
| 39 |
36 38
|
oveq12i |
|- ( ( A . B ) + ( C . D ) ) = ( _ A B + _ C D ) |
| 40 |
|
rpre |
|- ( F e. RR+ -> F e. RR ) |
| 41 |
6 40
|
ax-mp |
|- F e. RR |
| 42 |
|
dpval |
|- ( ( E e. NN0 /\ F e. RR ) -> ( E . F ) = _ E F ) |
| 43 |
5 41 42
|
mp2an |
|- ( E . F ) = _ E F |
| 44 |
10 39 43
|
3eqtr3i |
|- ( _ A B + _ C D ) = _ E F |
| 45 |
44
|
oveq1i |
|- ( ( _ A B + _ C D ) / ; 1 0 ) = ( _ E F / ; 1 0 ) |
| 46 |
34 45
|
eqtr3i |
|- ( ( _ A B / ; 1 0 ) + ( _ C D / ; 1 0 ) ) = ( _ E F / ; 1 0 ) |
| 47 |
9 46
|
oveq12i |
|- ( ( G + H ) + ( ( _ A B / ; 1 0 ) + ( _ C D / ; 1 0 ) ) ) = ( I + ( _ E F / ; 1 0 ) ) |
| 48 |
7 8
|
nn0addcli |
|- ( G + H ) e. NN0 |
| 49 |
9 48
|
eqeltrri |
|- I e. NN0 |
| 50 |
5
|
nn0rei |
|- E e. RR |
| 51 |
|
dp2cl |
|- ( ( E e. RR /\ F e. RR ) -> _ E F e. RR ) |
| 52 |
50 41 51
|
mp2an |
|- _ E F e. RR |
| 53 |
49 52
|
dpval2 |
|- ( I . _ E F ) = ( I + ( _ E F / ; 1 0 ) ) |
| 54 |
47 53
|
eqtr4i |
|- ( ( G + H ) + ( ( _ A B / ; 1 0 ) + ( _ C D / ; 1 0 ) ) ) = ( I . _ E F ) |
| 55 |
23 33 54
|
3eqtri |
|- ( ( G . _ A B ) + ( H . _ C D ) ) = ( I . _ E F ) |