Step |
Hyp |
Ref |
Expression |
1 |
|
dpadd2.a |
|- A e. NN0 |
2 |
|
dpadd2.b |
|- B e. RR+ |
3 |
|
dpadd2.c |
|- C e. NN0 |
4 |
|
dpadd2.d |
|- D e. RR+ |
5 |
|
dpadd2.e |
|- E e. NN0 |
6 |
|
dpadd2.f |
|- F e. RR+ |
7 |
|
dpadd2.g |
|- G e. NN0 |
8 |
|
dpadd2.h |
|- H e. NN0 |
9 |
|
dpadd2.i |
|- ( G + H ) = I |
10 |
|
dpadd2.1 |
|- ( ( A . B ) + ( C . D ) ) = ( E . F ) |
11 |
1
|
nn0rei |
|- A e. RR |
12 |
|
rpre |
|- ( B e. RR+ -> B e. RR ) |
13 |
2 12
|
ax-mp |
|- B e. RR |
14 |
|
dp2cl |
|- ( ( A e. RR /\ B e. RR ) -> _ A B e. RR ) |
15 |
11 13 14
|
mp2an |
|- _ A B e. RR |
16 |
7 15
|
dpval2 |
|- ( G . _ A B ) = ( G + ( _ A B / ; 1 0 ) ) |
17 |
3
|
nn0rei |
|- C e. RR |
18 |
|
rpre |
|- ( D e. RR+ -> D e. RR ) |
19 |
4 18
|
ax-mp |
|- D e. RR |
20 |
|
dp2cl |
|- ( ( C e. RR /\ D e. RR ) -> _ C D e. RR ) |
21 |
17 19 20
|
mp2an |
|- _ C D e. RR |
22 |
8 21
|
dpval2 |
|- ( H . _ C D ) = ( H + ( _ C D / ; 1 0 ) ) |
23 |
16 22
|
oveq12i |
|- ( ( G . _ A B ) + ( H . _ C D ) ) = ( ( G + ( _ A B / ; 1 0 ) ) + ( H + ( _ C D / ; 1 0 ) ) ) |
24 |
7
|
nn0cni |
|- G e. CC |
25 |
15
|
recni |
|- _ A B e. CC |
26 |
|
10nn |
|- ; 1 0 e. NN |
27 |
26
|
nncni |
|- ; 1 0 e. CC |
28 |
26
|
nnne0i |
|- ; 1 0 =/= 0 |
29 |
25 27 28
|
divcli |
|- ( _ A B / ; 1 0 ) e. CC |
30 |
8
|
nn0cni |
|- H e. CC |
31 |
21
|
recni |
|- _ C D e. CC |
32 |
31 27 28
|
divcli |
|- ( _ C D / ; 1 0 ) e. CC |
33 |
24 29 30 32
|
add4i |
|- ( ( G + ( _ A B / ; 1 0 ) ) + ( H + ( _ C D / ; 1 0 ) ) ) = ( ( G + H ) + ( ( _ A B / ; 1 0 ) + ( _ C D / ; 1 0 ) ) ) |
34 |
25 31 27 28
|
divdiri |
|- ( ( _ A B + _ C D ) / ; 1 0 ) = ( ( _ A B / ; 1 0 ) + ( _ C D / ; 1 0 ) ) |
35 |
|
dpval |
|- ( ( A e. NN0 /\ B e. RR ) -> ( A . B ) = _ A B ) |
36 |
1 13 35
|
mp2an |
|- ( A . B ) = _ A B |
37 |
|
dpval |
|- ( ( C e. NN0 /\ D e. RR ) -> ( C . D ) = _ C D ) |
38 |
3 19 37
|
mp2an |
|- ( C . D ) = _ C D |
39 |
36 38
|
oveq12i |
|- ( ( A . B ) + ( C . D ) ) = ( _ A B + _ C D ) |
40 |
|
rpre |
|- ( F e. RR+ -> F e. RR ) |
41 |
6 40
|
ax-mp |
|- F e. RR |
42 |
|
dpval |
|- ( ( E e. NN0 /\ F e. RR ) -> ( E . F ) = _ E F ) |
43 |
5 41 42
|
mp2an |
|- ( E . F ) = _ E F |
44 |
10 39 43
|
3eqtr3i |
|- ( _ A B + _ C D ) = _ E F |
45 |
44
|
oveq1i |
|- ( ( _ A B + _ C D ) / ; 1 0 ) = ( _ E F / ; 1 0 ) |
46 |
34 45
|
eqtr3i |
|- ( ( _ A B / ; 1 0 ) + ( _ C D / ; 1 0 ) ) = ( _ E F / ; 1 0 ) |
47 |
9 46
|
oveq12i |
|- ( ( G + H ) + ( ( _ A B / ; 1 0 ) + ( _ C D / ; 1 0 ) ) ) = ( I + ( _ E F / ; 1 0 ) ) |
48 |
7 8
|
nn0addcli |
|- ( G + H ) e. NN0 |
49 |
9 48
|
eqeltrri |
|- I e. NN0 |
50 |
5
|
nn0rei |
|- E e. RR |
51 |
|
dp2cl |
|- ( ( E e. RR /\ F e. RR ) -> _ E F e. RR ) |
52 |
50 41 51
|
mp2an |
|- _ E F e. RR |
53 |
49 52
|
dpval2 |
|- ( I . _ E F ) = ( I + ( _ E F / ; 1 0 ) ) |
54 |
47 53
|
eqtr4i |
|- ( ( G + H ) + ( ( _ A B / ; 1 0 ) + ( _ C D / ; 1 0 ) ) ) = ( I . _ E F ) |
55 |
23 33 54
|
3eqtri |
|- ( ( G . _ A B ) + ( H . _ C D ) ) = ( I . _ E F ) |