Step |
Hyp |
Ref |
Expression |
1 |
|
dpmul.a |
|- A e. NN0 |
2 |
|
dpmul.b |
|- B e. NN0 |
3 |
|
dpmul.c |
|- C e. NN0 |
4 |
|
dpmul.d |
|- D e. NN0 |
5 |
|
dpmul.e |
|- E e. NN0 |
6 |
|
dpmul.g |
|- G e. NN0 |
7 |
|
dpadd3.f |
|- F e. NN0 |
8 |
|
dpadd3.h |
|- H e. NN0 |
9 |
|
dpadd3.i |
|- I e. NN0 |
10 |
|
dpadd3.1 |
|- ( ; ; A B C + ; ; D E F ) = ; ; G H I |
11 |
2
|
nn0rei |
|- B e. RR |
12 |
3
|
nn0rei |
|- C e. RR |
13 |
|
dp2cl |
|- ( ( B e. RR /\ C e. RR ) -> _ B C e. RR ) |
14 |
11 12 13
|
mp2an |
|- _ B C e. RR |
15 |
|
dpcl |
|- ( ( A e. NN0 /\ _ B C e. RR ) -> ( A . _ B C ) e. RR ) |
16 |
1 14 15
|
mp2an |
|- ( A . _ B C ) e. RR |
17 |
16
|
recni |
|- ( A . _ B C ) e. CC |
18 |
5
|
nn0rei |
|- E e. RR |
19 |
7
|
nn0rei |
|- F e. RR |
20 |
|
dp2cl |
|- ( ( E e. RR /\ F e. RR ) -> _ E F e. RR ) |
21 |
18 19 20
|
mp2an |
|- _ E F e. RR |
22 |
|
dpcl |
|- ( ( D e. NN0 /\ _ E F e. RR ) -> ( D . _ E F ) e. RR ) |
23 |
4 21 22
|
mp2an |
|- ( D . _ E F ) e. RR |
24 |
23
|
recni |
|- ( D . _ E F ) e. CC |
25 |
17 24
|
addcli |
|- ( ( A . _ B C ) + ( D . _ E F ) ) e. CC |
26 |
8
|
nn0rei |
|- H e. RR |
27 |
9
|
nn0rei |
|- I e. RR |
28 |
|
dp2cl |
|- ( ( H e. RR /\ I e. RR ) -> _ H I e. RR ) |
29 |
26 27 28
|
mp2an |
|- _ H I e. RR |
30 |
|
dpcl |
|- ( ( G e. NN0 /\ _ H I e. RR ) -> ( G . _ H I ) e. RR ) |
31 |
6 29 30
|
mp2an |
|- ( G . _ H I ) e. RR |
32 |
31
|
recni |
|- ( G . _ H I ) e. CC |
33 |
|
10nn |
|- ; 1 0 e. NN |
34 |
33
|
decnncl2 |
|- ; ; 1 0 0 e. NN |
35 |
34
|
nncni |
|- ; ; 1 0 0 e. CC |
36 |
34
|
nnne0i |
|- ; ; 1 0 0 =/= 0 |
37 |
35 36
|
pm3.2i |
|- ( ; ; 1 0 0 e. CC /\ ; ; 1 0 0 =/= 0 ) |
38 |
25 32 37
|
3pm3.2i |
|- ( ( ( A . _ B C ) + ( D . _ E F ) ) e. CC /\ ( G . _ H I ) e. CC /\ ( ; ; 1 0 0 e. CC /\ ; ; 1 0 0 =/= 0 ) ) |
39 |
17 24 35
|
adddiri |
|- ( ( ( A . _ B C ) + ( D . _ E F ) ) x. ; ; 1 0 0 ) = ( ( ( A . _ B C ) x. ; ; 1 0 0 ) + ( ( D . _ E F ) x. ; ; 1 0 0 ) ) |
40 |
1 2 12
|
dpmul100 |
|- ( ( A . _ B C ) x. ; ; 1 0 0 ) = ; ; A B C |
41 |
4 5 19
|
dpmul100 |
|- ( ( D . _ E F ) x. ; ; 1 0 0 ) = ; ; D E F |
42 |
40 41
|
oveq12i |
|- ( ( ( A . _ B C ) x. ; ; 1 0 0 ) + ( ( D . _ E F ) x. ; ; 1 0 0 ) ) = ( ; ; A B C + ; ; D E F ) |
43 |
6 8 27
|
dpmul100 |
|- ( ( G . _ H I ) x. ; ; 1 0 0 ) = ; ; G H I |
44 |
10 42 43
|
3eqtr4i |
|- ( ( ( A . _ B C ) x. ; ; 1 0 0 ) + ( ( D . _ E F ) x. ; ; 1 0 0 ) ) = ( ( G . _ H I ) x. ; ; 1 0 0 ) |
45 |
39 44
|
eqtri |
|- ( ( ( A . _ B C ) + ( D . _ E F ) ) x. ; ; 1 0 0 ) = ( ( G . _ H I ) x. ; ; 1 0 0 ) |
46 |
|
mulcan2 |
|- ( ( ( ( A . _ B C ) + ( D . _ E F ) ) e. CC /\ ( G . _ H I ) e. CC /\ ( ; ; 1 0 0 e. CC /\ ; ; 1 0 0 =/= 0 ) ) -> ( ( ( ( A . _ B C ) + ( D . _ E F ) ) x. ; ; 1 0 0 ) = ( ( G . _ H I ) x. ; ; 1 0 0 ) <-> ( ( A . _ B C ) + ( D . _ E F ) ) = ( G . _ H I ) ) ) |
47 |
46
|
biimpa |
|- ( ( ( ( ( A . _ B C ) + ( D . _ E F ) ) e. CC /\ ( G . _ H I ) e. CC /\ ( ; ; 1 0 0 e. CC /\ ; ; 1 0 0 =/= 0 ) ) /\ ( ( ( A . _ B C ) + ( D . _ E F ) ) x. ; ; 1 0 0 ) = ( ( G . _ H I ) x. ; ; 1 0 0 ) ) -> ( ( A . _ B C ) + ( D . _ E F ) ) = ( G . _ H I ) ) |
48 |
38 45 47
|
mp2an |
|- ( ( A . _ B C ) + ( D . _ E F ) ) = ( G . _ H I ) |