| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dpexpp1.a |
|- A e. NN0 |
| 2 |
|
dpexpp1.b |
|- B e. RR+ |
| 3 |
|
dpexpp1.1 |
|- ( P + 1 ) = Q |
| 4 |
|
dpexpp1.p |
|- P e. ZZ |
| 5 |
|
dpexpp1.q |
|- Q e. ZZ |
| 6 |
|
0re |
|- 0 e. RR |
| 7 |
|
10pos |
|- 0 < ; 1 0 |
| 8 |
6 7
|
gtneii |
|- ; 1 0 =/= 0 |
| 9 |
1 2
|
rpdp2cl |
|- _ A B e. RR+ |
| 10 |
|
rpre |
|- ( _ A B e. RR+ -> _ A B e. RR ) |
| 11 |
9 10
|
ax-mp |
|- _ A B e. RR |
| 12 |
11
|
recni |
|- _ A B e. CC |
| 13 |
|
10re |
|- ; 1 0 e. RR |
| 14 |
13 7
|
pm3.2i |
|- ( ; 1 0 e. RR /\ 0 < ; 1 0 ) |
| 15 |
|
elrp |
|- ( ; 1 0 e. RR+ <-> ( ; 1 0 e. RR /\ 0 < ; 1 0 ) ) |
| 16 |
14 15
|
mpbir |
|- ; 1 0 e. RR+ |
| 17 |
|
rpexpcl |
|- ( ( ; 1 0 e. RR+ /\ P e. ZZ ) -> ( ; 1 0 ^ P ) e. RR+ ) |
| 18 |
16 4 17
|
mp2an |
|- ( ; 1 0 ^ P ) e. RR+ |
| 19 |
|
rpcn |
|- ( ( ; 1 0 ^ P ) e. RR+ -> ( ; 1 0 ^ P ) e. CC ) |
| 20 |
18 19
|
ax-mp |
|- ( ; 1 0 ^ P ) e. CC |
| 21 |
12 20
|
mulcli |
|- ( _ A B x. ( ; 1 0 ^ P ) ) e. CC |
| 22 |
|
10nn0 |
|- ; 1 0 e. NN0 |
| 23 |
22
|
nn0cni |
|- ; 1 0 e. CC |
| 24 |
21 23
|
divcan1zi |
|- ( ; 1 0 =/= 0 -> ( ( ( _ A B x. ( ; 1 0 ^ P ) ) / ; 1 0 ) x. ; 1 0 ) = ( _ A B x. ( ; 1 0 ^ P ) ) ) |
| 25 |
8 24
|
ax-mp |
|- ( ( ( _ A B x. ( ; 1 0 ^ P ) ) / ; 1 0 ) x. ; 1 0 ) = ( _ A B x. ( ; 1 0 ^ P ) ) |
| 26 |
23 8
|
pm3.2i |
|- ( ; 1 0 e. CC /\ ; 1 0 =/= 0 ) |
| 27 |
|
div23 |
|- ( ( _ A B e. CC /\ ( ; 1 0 ^ P ) e. CC /\ ( ; 1 0 e. CC /\ ; 1 0 =/= 0 ) ) -> ( ( _ A B x. ( ; 1 0 ^ P ) ) / ; 1 0 ) = ( ( _ A B / ; 1 0 ) x. ( ; 1 0 ^ P ) ) ) |
| 28 |
12 20 26 27
|
mp3an |
|- ( ( _ A B x. ( ; 1 0 ^ P ) ) / ; 1 0 ) = ( ( _ A B / ; 1 0 ) x. ( ; 1 0 ^ P ) ) |
| 29 |
28
|
oveq1i |
|- ( ( ( _ A B x. ( ; 1 0 ^ P ) ) / ; 1 0 ) x. ; 1 0 ) = ( ( ( _ A B / ; 1 0 ) x. ( ; 1 0 ^ P ) ) x. ; 1 0 ) |
| 30 |
25 29
|
eqtr3i |
|- ( _ A B x. ( ; 1 0 ^ P ) ) = ( ( ( _ A B / ; 1 0 ) x. ( ; 1 0 ^ P ) ) x. ; 1 0 ) |
| 31 |
12 23 8
|
divcli |
|- ( _ A B / ; 1 0 ) e. CC |
| 32 |
31 20 23
|
mulassi |
|- ( ( ( _ A B / ; 1 0 ) x. ( ; 1 0 ^ P ) ) x. ; 1 0 ) = ( ( _ A B / ; 1 0 ) x. ( ( ; 1 0 ^ P ) x. ; 1 0 ) ) |
| 33 |
|
expp1z |
|- ( ( ; 1 0 e. CC /\ ; 1 0 =/= 0 /\ P e. ZZ ) -> ( ; 1 0 ^ ( P + 1 ) ) = ( ( ; 1 0 ^ P ) x. ; 1 0 ) ) |
| 34 |
23 8 4 33
|
mp3an |
|- ( ; 1 0 ^ ( P + 1 ) ) = ( ( ; 1 0 ^ P ) x. ; 1 0 ) |
| 35 |
3
|
oveq2i |
|- ( ; 1 0 ^ ( P + 1 ) ) = ( ; 1 0 ^ Q ) |
| 36 |
34 35
|
eqtr3i |
|- ( ( ; 1 0 ^ P ) x. ; 1 0 ) = ( ; 1 0 ^ Q ) |
| 37 |
36
|
oveq2i |
|- ( ( _ A B / ; 1 0 ) x. ( ( ; 1 0 ^ P ) x. ; 1 0 ) ) = ( ( _ A B / ; 1 0 ) x. ( ; 1 0 ^ Q ) ) |
| 38 |
30 32 37
|
3eqtri |
|- ( _ A B x. ( ; 1 0 ^ P ) ) = ( ( _ A B / ; 1 0 ) x. ( ; 1 0 ^ Q ) ) |
| 39 |
1 2
|
dpval3rp |
|- ( A . B ) = _ A B |
| 40 |
39
|
oveq1i |
|- ( ( A . B ) x. ( ; 1 0 ^ P ) ) = ( _ A B x. ( ; 1 0 ^ P ) ) |
| 41 |
|
0nn0 |
|- 0 e. NN0 |
| 42 |
41 9
|
dpval3rp |
|- ( 0 . _ A B ) = _ 0 _ A B |
| 43 |
9
|
dp20h |
|- _ 0 _ A B = ( _ A B / ; 1 0 ) |
| 44 |
42 43
|
eqtri |
|- ( 0 . _ A B ) = ( _ A B / ; 1 0 ) |
| 45 |
44
|
oveq1i |
|- ( ( 0 . _ A B ) x. ( ; 1 0 ^ Q ) ) = ( ( _ A B / ; 1 0 ) x. ( ; 1 0 ^ Q ) ) |
| 46 |
38 40 45
|
3eqtr4i |
|- ( ( A . B ) x. ( ; 1 0 ^ P ) ) = ( ( 0 . _ A B ) x. ( ; 1 0 ^ Q ) ) |