Step |
Hyp |
Ref |
Expression |
1 |
|
dpexpp1.a |
|- A e. NN0 |
2 |
|
dpexpp1.b |
|- B e. RR+ |
3 |
|
dpexpp1.1 |
|- ( P + 1 ) = Q |
4 |
|
dpexpp1.p |
|- P e. ZZ |
5 |
|
dpexpp1.q |
|- Q e. ZZ |
6 |
|
0re |
|- 0 e. RR |
7 |
|
10pos |
|- 0 < ; 1 0 |
8 |
6 7
|
gtneii |
|- ; 1 0 =/= 0 |
9 |
1 2
|
rpdp2cl |
|- _ A B e. RR+ |
10 |
|
rpre |
|- ( _ A B e. RR+ -> _ A B e. RR ) |
11 |
9 10
|
ax-mp |
|- _ A B e. RR |
12 |
11
|
recni |
|- _ A B e. CC |
13 |
|
10re |
|- ; 1 0 e. RR |
14 |
13 7
|
pm3.2i |
|- ( ; 1 0 e. RR /\ 0 < ; 1 0 ) |
15 |
|
elrp |
|- ( ; 1 0 e. RR+ <-> ( ; 1 0 e. RR /\ 0 < ; 1 0 ) ) |
16 |
14 15
|
mpbir |
|- ; 1 0 e. RR+ |
17 |
|
rpexpcl |
|- ( ( ; 1 0 e. RR+ /\ P e. ZZ ) -> ( ; 1 0 ^ P ) e. RR+ ) |
18 |
16 4 17
|
mp2an |
|- ( ; 1 0 ^ P ) e. RR+ |
19 |
|
rpcn |
|- ( ( ; 1 0 ^ P ) e. RR+ -> ( ; 1 0 ^ P ) e. CC ) |
20 |
18 19
|
ax-mp |
|- ( ; 1 0 ^ P ) e. CC |
21 |
12 20
|
mulcli |
|- ( _ A B x. ( ; 1 0 ^ P ) ) e. CC |
22 |
|
10nn0 |
|- ; 1 0 e. NN0 |
23 |
22
|
nn0cni |
|- ; 1 0 e. CC |
24 |
21 23
|
divcan1zi |
|- ( ; 1 0 =/= 0 -> ( ( ( _ A B x. ( ; 1 0 ^ P ) ) / ; 1 0 ) x. ; 1 0 ) = ( _ A B x. ( ; 1 0 ^ P ) ) ) |
25 |
8 24
|
ax-mp |
|- ( ( ( _ A B x. ( ; 1 0 ^ P ) ) / ; 1 0 ) x. ; 1 0 ) = ( _ A B x. ( ; 1 0 ^ P ) ) |
26 |
23 8
|
pm3.2i |
|- ( ; 1 0 e. CC /\ ; 1 0 =/= 0 ) |
27 |
|
div23 |
|- ( ( _ A B e. CC /\ ( ; 1 0 ^ P ) e. CC /\ ( ; 1 0 e. CC /\ ; 1 0 =/= 0 ) ) -> ( ( _ A B x. ( ; 1 0 ^ P ) ) / ; 1 0 ) = ( ( _ A B / ; 1 0 ) x. ( ; 1 0 ^ P ) ) ) |
28 |
12 20 26 27
|
mp3an |
|- ( ( _ A B x. ( ; 1 0 ^ P ) ) / ; 1 0 ) = ( ( _ A B / ; 1 0 ) x. ( ; 1 0 ^ P ) ) |
29 |
28
|
oveq1i |
|- ( ( ( _ A B x. ( ; 1 0 ^ P ) ) / ; 1 0 ) x. ; 1 0 ) = ( ( ( _ A B / ; 1 0 ) x. ( ; 1 0 ^ P ) ) x. ; 1 0 ) |
30 |
25 29
|
eqtr3i |
|- ( _ A B x. ( ; 1 0 ^ P ) ) = ( ( ( _ A B / ; 1 0 ) x. ( ; 1 0 ^ P ) ) x. ; 1 0 ) |
31 |
12 23 8
|
divcli |
|- ( _ A B / ; 1 0 ) e. CC |
32 |
31 20 23
|
mulassi |
|- ( ( ( _ A B / ; 1 0 ) x. ( ; 1 0 ^ P ) ) x. ; 1 0 ) = ( ( _ A B / ; 1 0 ) x. ( ( ; 1 0 ^ P ) x. ; 1 0 ) ) |
33 |
|
expp1z |
|- ( ( ; 1 0 e. CC /\ ; 1 0 =/= 0 /\ P e. ZZ ) -> ( ; 1 0 ^ ( P + 1 ) ) = ( ( ; 1 0 ^ P ) x. ; 1 0 ) ) |
34 |
23 8 4 33
|
mp3an |
|- ( ; 1 0 ^ ( P + 1 ) ) = ( ( ; 1 0 ^ P ) x. ; 1 0 ) |
35 |
3
|
oveq2i |
|- ( ; 1 0 ^ ( P + 1 ) ) = ( ; 1 0 ^ Q ) |
36 |
34 35
|
eqtr3i |
|- ( ( ; 1 0 ^ P ) x. ; 1 0 ) = ( ; 1 0 ^ Q ) |
37 |
36
|
oveq2i |
|- ( ( _ A B / ; 1 0 ) x. ( ( ; 1 0 ^ P ) x. ; 1 0 ) ) = ( ( _ A B / ; 1 0 ) x. ( ; 1 0 ^ Q ) ) |
38 |
30 32 37
|
3eqtri |
|- ( _ A B x. ( ; 1 0 ^ P ) ) = ( ( _ A B / ; 1 0 ) x. ( ; 1 0 ^ Q ) ) |
39 |
1 2
|
dpval3rp |
|- ( A . B ) = _ A B |
40 |
39
|
oveq1i |
|- ( ( A . B ) x. ( ; 1 0 ^ P ) ) = ( _ A B x. ( ; 1 0 ^ P ) ) |
41 |
|
0nn0 |
|- 0 e. NN0 |
42 |
41 9
|
dpval3rp |
|- ( 0 . _ A B ) = _ 0 _ A B |
43 |
9
|
dp20h |
|- _ 0 _ A B = ( _ A B / ; 1 0 ) |
44 |
42 43
|
eqtri |
|- ( 0 . _ A B ) = ( _ A B / ; 1 0 ) |
45 |
44
|
oveq1i |
|- ( ( 0 . _ A B ) x. ( ; 1 0 ^ Q ) ) = ( ( _ A B / ; 1 0 ) x. ( ; 1 0 ^ Q ) ) |
46 |
38 40 45
|
3eqtr4i |
|- ( ( A . B ) x. ( ; 1 0 ^ P ) ) = ( ( 0 . _ A B ) x. ( ; 1 0 ^ Q ) ) |