Metamath Proof Explorer


Theorem dpgti

Description: Comparing a decimal expansions with the next lower integer. (Contributed by Thierry Arnoux, 16-Dec-2021)

Ref Expression
Hypotheses dpgti.a
|- A e. NN0
dpgti.b
|- B e. RR+
Assertion dpgti
|- A < ( A . B )

Proof

Step Hyp Ref Expression
1 dpgti.a
 |-  A e. NN0
2 dpgti.b
 |-  B e. RR+
3 1 nn0rei
 |-  A e. RR
4 10re
 |-  ; 1 0 e. RR
5 10pos
 |-  0 < ; 1 0
6 4 5 pm3.2i
 |-  ( ; 1 0 e. RR /\ 0 < ; 1 0 )
7 elrp
 |-  ( ; 1 0 e. RR+ <-> ( ; 1 0 e. RR /\ 0 < ; 1 0 ) )
8 6 7 mpbir
 |-  ; 1 0 e. RR+
9 rpdivcl
 |-  ( ( B e. RR+ /\ ; 1 0 e. RR+ ) -> ( B / ; 1 0 ) e. RR+ )
10 2 8 9 mp2an
 |-  ( B / ; 1 0 ) e. RR+
11 ltaddrp
 |-  ( ( A e. RR /\ ( B / ; 1 0 ) e. RR+ ) -> A < ( A + ( B / ; 1 0 ) ) )
12 3 10 11 mp2an
 |-  A < ( A + ( B / ; 1 0 ) )
13 rpre
 |-  ( B e. RR+ -> B e. RR )
14 2 13 ax-mp
 |-  B e. RR
15 1 14 dpval2
 |-  ( A . B ) = ( A + ( B / ; 1 0 ) )
16 12 15 breqtrri
 |-  A < ( A . B )