| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							dpjfval.1 | 
							 |-  ( ph -> G dom DProd S )  | 
						
						
							| 2 | 
							
								
							 | 
							dpjfval.2 | 
							 |-  ( ph -> dom S = I )  | 
						
						
							| 3 | 
							
								
							 | 
							dpjfval.p | 
							 |-  P = ( G dProj S )  | 
						
						
							| 4 | 
							
								
							 | 
							dpjidcl.3 | 
							 |-  ( ph -> A e. ( G DProd S ) )  | 
						
						
							| 5 | 
							
								
							 | 
							dpjidcl.0 | 
							 |-  .0. = ( 0g ` G )  | 
						
						
							| 6 | 
							
								
							 | 
							dpjidcl.w | 
							 |-  W = { h e. X_ i e. I ( S ` i ) | h finSupp .0. } | 
						
						
							| 7 | 
							
								
							 | 
							dpjeq.c | 
							 |-  ( ph -> ( x e. I |-> C ) e. W )  | 
						
						
							| 8 | 
							
								1 2 3 4 5 6
							 | 
							dpjidcl | 
							 |-  ( ph -> ( ( x e. I |-> ( ( P ` x ) ` A ) ) e. W /\ A = ( G gsum ( x e. I |-> ( ( P ` x ) ` A ) ) ) ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							simprd | 
							 |-  ( ph -> A = ( G gsum ( x e. I |-> ( ( P ` x ) ` A ) ) ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							eqeq1d | 
							 |-  ( ph -> ( A = ( G gsum ( x e. I |-> C ) ) <-> ( G gsum ( x e. I |-> ( ( P ` x ) ` A ) ) ) = ( G gsum ( x e. I |-> C ) ) ) )  | 
						
						
							| 11 | 
							
								8
							 | 
							simpld | 
							 |-  ( ph -> ( x e. I |-> ( ( P ` x ) ` A ) ) e. W )  | 
						
						
							| 12 | 
							
								5 6 1 2 11 7
							 | 
							dprdf11 | 
							 |-  ( ph -> ( ( G gsum ( x e. I |-> ( ( P ` x ) ` A ) ) ) = ( G gsum ( x e. I |-> C ) ) <-> ( x e. I |-> ( ( P ` x ) ` A ) ) = ( x e. I |-> C ) ) )  | 
						
						
							| 13 | 
							
								
							 | 
							fvex | 
							 |-  ( ( P ` x ) ` A ) e. _V  | 
						
						
							| 14 | 
							
								13
							 | 
							rgenw | 
							 |-  A. x e. I ( ( P ` x ) ` A ) e. _V  | 
						
						
							| 15 | 
							
								
							 | 
							mpteqb | 
							 |-  ( A. x e. I ( ( P ` x ) ` A ) e. _V -> ( ( x e. I |-> ( ( P ` x ) ` A ) ) = ( x e. I |-> C ) <-> A. x e. I ( ( P ` x ) ` A ) = C ) )  | 
						
						
							| 16 | 
							
								14 15
							 | 
							mp1i | 
							 |-  ( ph -> ( ( x e. I |-> ( ( P ` x ) ` A ) ) = ( x e. I |-> C ) <-> A. x e. I ( ( P ` x ) ` A ) = C ) )  | 
						
						
							| 17 | 
							
								10 12 16
							 | 
							3bitrd | 
							 |-  ( ph -> ( A = ( G gsum ( x e. I |-> C ) ) <-> A. x e. I ( ( P ` x ) ` A ) = C ) )  |