| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							dpjfval.1 | 
							 |-  ( ph -> G dom DProd S )  | 
						
						
							| 2 | 
							
								
							 | 
							dpjfval.2 | 
							 |-  ( ph -> dom S = I )  | 
						
						
							| 3 | 
							
								
							 | 
							dpjfval.p | 
							 |-  P = ( G dProj S )  | 
						
						
							| 4 | 
							
								
							 | 
							dpjfval.q | 
							 |-  Q = ( proj1 ` G )  | 
						
						
							| 5 | 
							
								
							 | 
							df-dpj | 
							 |-  dProj = ( g e. Grp , s e. ( dom DProd " { g } ) |-> ( i e. dom s |-> ( ( s ` i ) ( proj1 ` g ) ( g DProd ( s |` ( dom s \ { i } ) ) ) ) ) ) | 
						
						
							| 6 | 
							
								5
							 | 
							a1i | 
							 |-  ( ph -> dProj = ( g e. Grp , s e. ( dom DProd " { g } ) |-> ( i e. dom s |-> ( ( s ` i ) ( proj1 ` g ) ( g DProd ( s |` ( dom s \ { i } ) ) ) ) ) ) ) | 
						
						
							| 7 | 
							
								
							 | 
							simprr | 
							 |-  ( ( ph /\ ( g = G /\ s = S ) ) -> s = S )  | 
						
						
							| 8 | 
							
								7
							 | 
							dmeqd | 
							 |-  ( ( ph /\ ( g = G /\ s = S ) ) -> dom s = dom S )  | 
						
						
							| 9 | 
							
								2
							 | 
							adantr | 
							 |-  ( ( ph /\ ( g = G /\ s = S ) ) -> dom S = I )  | 
						
						
							| 10 | 
							
								8 9
							 | 
							eqtrd | 
							 |-  ( ( ph /\ ( g = G /\ s = S ) ) -> dom s = I )  | 
						
						
							| 11 | 
							
								
							 | 
							simprl | 
							 |-  ( ( ph /\ ( g = G /\ s = S ) ) -> g = G )  | 
						
						
							| 12 | 
							
								11
							 | 
							fveq2d | 
							 |-  ( ( ph /\ ( g = G /\ s = S ) ) -> ( proj1 ` g ) = ( proj1 ` G ) )  | 
						
						
							| 13 | 
							
								12 4
							 | 
							eqtr4di | 
							 |-  ( ( ph /\ ( g = G /\ s = S ) ) -> ( proj1 ` g ) = Q )  | 
						
						
							| 14 | 
							
								7
							 | 
							fveq1d | 
							 |-  ( ( ph /\ ( g = G /\ s = S ) ) -> ( s ` i ) = ( S ` i ) )  | 
						
						
							| 15 | 
							
								10
							 | 
							difeq1d | 
							 |-  ( ( ph /\ ( g = G /\ s = S ) ) -> ( dom s \ { i } ) = ( I \ { i } ) ) | 
						
						
							| 16 | 
							
								7 15
							 | 
							reseq12d | 
							 |-  ( ( ph /\ ( g = G /\ s = S ) ) -> ( s |` ( dom s \ { i } ) ) = ( S |` ( I \ { i } ) ) ) | 
						
						
							| 17 | 
							
								11 16
							 | 
							oveq12d | 
							 |-  ( ( ph /\ ( g = G /\ s = S ) ) -> ( g DProd ( s |` ( dom s \ { i } ) ) ) = ( G DProd ( S |` ( I \ { i } ) ) ) ) | 
						
						
							| 18 | 
							
								13 14 17
							 | 
							oveq123d | 
							 |-  ( ( ph /\ ( g = G /\ s = S ) ) -> ( ( s ` i ) ( proj1 ` g ) ( g DProd ( s |` ( dom s \ { i } ) ) ) ) = ( ( S ` i ) Q ( G DProd ( S |` ( I \ { i } ) ) ) ) ) | 
						
						
							| 19 | 
							
								10 18
							 | 
							mpteq12dv | 
							 |-  ( ( ph /\ ( g = G /\ s = S ) ) -> ( i e. dom s |-> ( ( s ` i ) ( proj1 ` g ) ( g DProd ( s |` ( dom s \ { i } ) ) ) ) ) = ( i e. I |-> ( ( S ` i ) Q ( G DProd ( S |` ( I \ { i } ) ) ) ) ) ) | 
						
						
							| 20 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ph /\ g = G ) -> g = G )  | 
						
						
							| 21 | 
							
								20
							 | 
							sneqd | 
							 |-  ( ( ph /\ g = G ) -> { g } = { G } ) | 
						
						
							| 22 | 
							
								21
							 | 
							imaeq2d | 
							 |-  ( ( ph /\ g = G ) -> ( dom DProd " { g } ) = ( dom DProd " { G } ) ) | 
						
						
							| 23 | 
							
								
							 | 
							dprdgrp | 
							 |-  ( G dom DProd S -> G e. Grp )  | 
						
						
							| 24 | 
							
								1 23
							 | 
							syl | 
							 |-  ( ph -> G e. Grp )  | 
						
						
							| 25 | 
							
								
							 | 
							reldmdprd | 
							 |-  Rel dom DProd  | 
						
						
							| 26 | 
							
								
							 | 
							elrelimasn | 
							 |-  ( Rel dom DProd -> ( S e. ( dom DProd " { G } ) <-> G dom DProd S ) ) | 
						
						
							| 27 | 
							
								25 26
							 | 
							ax-mp | 
							 |-  ( S e. ( dom DProd " { G } ) <-> G dom DProd S ) | 
						
						
							| 28 | 
							
								1 27
							 | 
							sylibr | 
							 |-  ( ph -> S e. ( dom DProd " { G } ) ) | 
						
						
							| 29 | 
							
								1 2
							 | 
							dprddomcld | 
							 |-  ( ph -> I e. _V )  | 
						
						
							| 30 | 
							
								29
							 | 
							mptexd | 
							 |-  ( ph -> ( i e. I |-> ( ( S ` i ) Q ( G DProd ( S |` ( I \ { i } ) ) ) ) ) e. _V ) | 
						
						
							| 31 | 
							
								6 19 22 24 28 30
							 | 
							ovmpodx | 
							 |-  ( ph -> ( G dProj S ) = ( i e. I |-> ( ( S ` i ) Q ( G DProd ( S |` ( I \ { i } ) ) ) ) ) ) | 
						
						
							| 32 | 
							
								3 31
							 | 
							eqtrid | 
							 |-  ( ph -> P = ( i e. I |-> ( ( S ` i ) Q ( G DProd ( S |` ( I \ { i } ) ) ) ) ) ) |