Step |
Hyp |
Ref |
Expression |
1 |
|
dpjfval.1 |
|- ( ph -> G dom DProd S ) |
2 |
|
dpjfval.2 |
|- ( ph -> dom S = I ) |
3 |
|
dpjfval.p |
|- P = ( G dProj S ) |
4 |
|
dpjid.3 |
|- ( ph -> A e. ( G DProd S ) ) |
5 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
6 |
|
eqid |
|- { h e. X_ i e. I ( S ` i ) | h finSupp ( 0g ` G ) } = { h e. X_ i e. I ( S ` i ) | h finSupp ( 0g ` G ) } |
7 |
1 2 3 4 5 6
|
dpjidcl |
|- ( ph -> ( ( x e. I |-> ( ( P ` x ) ` A ) ) e. { h e. X_ i e. I ( S ` i ) | h finSupp ( 0g ` G ) } /\ A = ( G gsum ( x e. I |-> ( ( P ` x ) ` A ) ) ) ) ) |
8 |
7
|
simprd |
|- ( ph -> A = ( G gsum ( x e. I |-> ( ( P ` x ) ` A ) ) ) ) |