Metamath Proof Explorer


Theorem dpjid

Description: The key property of projections: the sum of all the projections of A is A . (Contributed by Mario Carneiro, 26-Apr-2016)

Ref Expression
Hypotheses dpjfval.1
|- ( ph -> G dom DProd S )
dpjfval.2
|- ( ph -> dom S = I )
dpjfval.p
|- P = ( G dProj S )
dpjid.3
|- ( ph -> A e. ( G DProd S ) )
Assertion dpjid
|- ( ph -> A = ( G gsum ( x e. I |-> ( ( P ` x ) ` A ) ) ) )

Proof

Step Hyp Ref Expression
1 dpjfval.1
 |-  ( ph -> G dom DProd S )
2 dpjfval.2
 |-  ( ph -> dom S = I )
3 dpjfval.p
 |-  P = ( G dProj S )
4 dpjid.3
 |-  ( ph -> A e. ( G DProd S ) )
5 eqid
 |-  ( 0g ` G ) = ( 0g ` G )
6 eqid
 |-  { h e. X_ i e. I ( S ` i ) | h finSupp ( 0g ` G ) } = { h e. X_ i e. I ( S ` i ) | h finSupp ( 0g ` G ) }
7 1 2 3 4 5 6 dpjidcl
 |-  ( ph -> ( ( x e. I |-> ( ( P ` x ) ` A ) ) e. { h e. X_ i e. I ( S ` i ) | h finSupp ( 0g ` G ) } /\ A = ( G gsum ( x e. I |-> ( ( P ` x ) ` A ) ) ) ) )
8 7 simprd
 |-  ( ph -> A = ( G gsum ( x e. I |-> ( ( P ` x ) ` A ) ) ) )