| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							dpjfval.1 | 
							 |-  ( ph -> G dom DProd S )  | 
						
						
							| 2 | 
							
								
							 | 
							dpjfval.2 | 
							 |-  ( ph -> dom S = I )  | 
						
						
							| 3 | 
							
								
							 | 
							dpjfval.p | 
							 |-  P = ( G dProj S )  | 
						
						
							| 4 | 
							
								
							 | 
							dpjid.3 | 
							 |-  ( ph -> A e. ( G DProd S ) )  | 
						
						
							| 5 | 
							
								
							 | 
							eqid | 
							 |-  ( 0g ` G ) = ( 0g ` G )  | 
						
						
							| 6 | 
							
								
							 | 
							eqid | 
							 |-  { h e. X_ i e. I ( S ` i ) | h finSupp ( 0g ` G ) } = { h e. X_ i e. I ( S ` i ) | h finSupp ( 0g ` G ) } | 
						
						
							| 7 | 
							
								1 2 3 4 5 6
							 | 
							dpjidcl | 
							 |-  ( ph -> ( ( x e. I |-> ( ( P ` x ) ` A ) ) e. { h e. X_ i e. I ( S ` i ) | h finSupp ( 0g ` G ) } /\ A = ( G gsum ( x e. I |-> ( ( P ` x ) ` A ) ) ) ) ) | 
						
						
							| 8 | 
							
								7
							 | 
							simprd | 
							 |-  ( ph -> A = ( G gsum ( x e. I |-> ( ( P ` x ) ` A ) ) ) )  |