| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							dpjfval.1 | 
							 |-  ( ph -> G dom DProd S )  | 
						
						
							| 2 | 
							
								
							 | 
							dpjfval.2 | 
							 |-  ( ph -> dom S = I )  | 
						
						
							| 3 | 
							
								
							 | 
							dpjlem.3 | 
							 |-  ( ph -> X e. I )  | 
						
						
							| 4 | 
							
								1 2
							 | 
							dprdf2 | 
							 |-  ( ph -> S : I --> ( SubGrp ` G ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							ffnd | 
							 |-  ( ph -> S Fn I )  | 
						
						
							| 6 | 
							
								
							 | 
							fnressn | 
							 |-  ( ( S Fn I /\ X e. I ) -> ( S |` { X } ) = { <. X , ( S ` X ) >. } ) | 
						
						
							| 7 | 
							
								5 3 6
							 | 
							syl2anc | 
							 |-  ( ph -> ( S |` { X } ) = { <. X , ( S ` X ) >. } ) | 
						
						
							| 8 | 
							
								7
							 | 
							oveq2d | 
							 |-  ( ph -> ( G DProd ( S |` { X } ) ) = ( G DProd { <. X , ( S ` X ) >. } ) ) | 
						
						
							| 9 | 
							
								4 3
							 | 
							ffvelcdmd | 
							 |-  ( ph -> ( S ` X ) e. ( SubGrp ` G ) )  | 
						
						
							| 10 | 
							
								
							 | 
							dprdsn | 
							 |-  ( ( X e. I /\ ( S ` X ) e. ( SubGrp ` G ) ) -> ( G dom DProd { <. X , ( S ` X ) >. } /\ ( G DProd { <. X , ( S ` X ) >. } ) = ( S ` X ) ) ) | 
						
						
							| 11 | 
							
								3 9 10
							 | 
							syl2anc | 
							 |-  ( ph -> ( G dom DProd { <. X , ( S ` X ) >. } /\ ( G DProd { <. X , ( S ` X ) >. } ) = ( S ` X ) ) ) | 
						
						
							| 12 | 
							
								11
							 | 
							simprd | 
							 |-  ( ph -> ( G DProd { <. X , ( S ` X ) >. } ) = ( S ` X ) ) | 
						
						
							| 13 | 
							
								8 12
							 | 
							eqtrd | 
							 |-  ( ph -> ( G DProd ( S |` { X } ) ) = ( S ` X ) ) |