Step |
Hyp |
Ref |
Expression |
1 |
|
dpjfval.1 |
|- ( ph -> G dom DProd S ) |
2 |
|
dpjfval.2 |
|- ( ph -> dom S = I ) |
3 |
|
dpjlem.3 |
|- ( ph -> X e. I ) |
4 |
1 2
|
dprdf2 |
|- ( ph -> S : I --> ( SubGrp ` G ) ) |
5 |
4
|
ffnd |
|- ( ph -> S Fn I ) |
6 |
|
fnressn |
|- ( ( S Fn I /\ X e. I ) -> ( S |` { X } ) = { <. X , ( S ` X ) >. } ) |
7 |
5 3 6
|
syl2anc |
|- ( ph -> ( S |` { X } ) = { <. X , ( S ` X ) >. } ) |
8 |
7
|
oveq2d |
|- ( ph -> ( G DProd ( S |` { X } ) ) = ( G DProd { <. X , ( S ` X ) >. } ) ) |
9 |
4 3
|
ffvelrnd |
|- ( ph -> ( S ` X ) e. ( SubGrp ` G ) ) |
10 |
|
dprdsn |
|- ( ( X e. I /\ ( S ` X ) e. ( SubGrp ` G ) ) -> ( G dom DProd { <. X , ( S ` X ) >. } /\ ( G DProd { <. X , ( S ` X ) >. } ) = ( S ` X ) ) ) |
11 |
3 9 10
|
syl2anc |
|- ( ph -> ( G dom DProd { <. X , ( S ` X ) >. } /\ ( G DProd { <. X , ( S ` X ) >. } ) = ( S ` X ) ) ) |
12 |
11
|
simprd |
|- ( ph -> ( G DProd { <. X , ( S ` X ) >. } ) = ( S ` X ) ) |
13 |
8 12
|
eqtrd |
|- ( ph -> ( G DProd ( S |` { X } ) ) = ( S ` X ) ) |