| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							dpjfval.1 | 
							 |-  ( ph -> G dom DProd S )  | 
						
						
							| 2 | 
							
								
							 | 
							dpjfval.2 | 
							 |-  ( ph -> dom S = I )  | 
						
						
							| 3 | 
							
								
							 | 
							dpjfval.p | 
							 |-  P = ( G dProj S )  | 
						
						
							| 4 | 
							
								
							 | 
							dpjlid.3 | 
							 |-  ( ph -> X e. I )  | 
						
						
							| 5 | 
							
								
							 | 
							dpjlid.4 | 
							 |-  ( ph -> A e. ( S ` X ) )  | 
						
						
							| 6 | 
							
								
							 | 
							eqid | 
							 |-  ( proj1 ` G ) = ( proj1 ` G )  | 
						
						
							| 7 | 
							
								1 2 3 6 4
							 | 
							dpjval | 
							 |-  ( ph -> ( P ` X ) = ( ( S ` X ) ( proj1 ` G ) ( G DProd ( S |` ( I \ { X } ) ) ) ) ) | 
						
						
							| 8 | 
							
								7
							 | 
							fveq1d | 
							 |-  ( ph -> ( ( P ` X ) ` A ) = ( ( ( S ` X ) ( proj1 ` G ) ( G DProd ( S |` ( I \ { X } ) ) ) ) ` A ) ) | 
						
						
							| 9 | 
							
								
							 | 
							eqid | 
							 |-  ( +g ` G ) = ( +g ` G )  | 
						
						
							| 10 | 
							
								
							 | 
							eqid | 
							 |-  ( LSSum ` G ) = ( LSSum ` G )  | 
						
						
							| 11 | 
							
								
							 | 
							eqid | 
							 |-  ( 0g ` G ) = ( 0g ` G )  | 
						
						
							| 12 | 
							
								
							 | 
							eqid | 
							 |-  ( Cntz ` G ) = ( Cntz ` G )  | 
						
						
							| 13 | 
							
								1 2
							 | 
							dprdf2 | 
							 |-  ( ph -> S : I --> ( SubGrp ` G ) )  | 
						
						
							| 14 | 
							
								13 4
							 | 
							ffvelcdmd | 
							 |-  ( ph -> ( S ` X ) e. ( SubGrp ` G ) )  | 
						
						
							| 15 | 
							
								
							 | 
							difssd | 
							 |-  ( ph -> ( I \ { X } ) C_ I ) | 
						
						
							| 16 | 
							
								1 2 15
							 | 
							dprdres | 
							 |-  ( ph -> ( G dom DProd ( S |` ( I \ { X } ) ) /\ ( G DProd ( S |` ( I \ { X } ) ) ) C_ ( G DProd S ) ) ) | 
						
						
							| 17 | 
							
								16
							 | 
							simpld | 
							 |-  ( ph -> G dom DProd ( S |` ( I \ { X } ) ) ) | 
						
						
							| 18 | 
							
								
							 | 
							dprdsubg | 
							 |-  ( G dom DProd ( S |` ( I \ { X } ) ) -> ( G DProd ( S |` ( I \ { X } ) ) ) e. ( SubGrp ` G ) ) | 
						
						
							| 19 | 
							
								17 18
							 | 
							syl | 
							 |-  ( ph -> ( G DProd ( S |` ( I \ { X } ) ) ) e. ( SubGrp ` G ) ) | 
						
						
							| 20 | 
							
								1 2 4 11
							 | 
							dpjdisj | 
							 |-  ( ph -> ( ( S ` X ) i^i ( G DProd ( S |` ( I \ { X } ) ) ) ) = { ( 0g ` G ) } ) | 
						
						
							| 21 | 
							
								1 2 4 12
							 | 
							dpjcntz | 
							 |-  ( ph -> ( S ` X ) C_ ( ( Cntz ` G ) ` ( G DProd ( S |` ( I \ { X } ) ) ) ) ) | 
						
						
							| 22 | 
							
								9 10 11 12 14 19 20 21 6
							 | 
							pj1lid | 
							 |-  ( ( ph /\ A e. ( S ` X ) ) -> ( ( ( S ` X ) ( proj1 ` G ) ( G DProd ( S |` ( I \ { X } ) ) ) ) ` A ) = A ) | 
						
						
							| 23 | 
							
								5 22
							 | 
							mpdan | 
							 |-  ( ph -> ( ( ( S ` X ) ( proj1 ` G ) ( G DProd ( S |` ( I \ { X } ) ) ) ) ` A ) = A ) | 
						
						
							| 24 | 
							
								8 23
							 | 
							eqtrd | 
							 |-  ( ph -> ( ( P ` X ) ` A ) = A )  |