Step |
Hyp |
Ref |
Expression |
1 |
|
dpjfval.1 |
|- ( ph -> G dom DProd S ) |
2 |
|
dpjfval.2 |
|- ( ph -> dom S = I ) |
3 |
|
dpjfval.p |
|- P = ( G dProj S ) |
4 |
|
dpjlid.3 |
|- ( ph -> X e. I ) |
5 |
|
dpjlid.4 |
|- ( ph -> A e. ( S ` X ) ) |
6 |
|
dpjrid.0 |
|- .0. = ( 0g ` G ) |
7 |
|
dpjrid.5 |
|- ( ph -> Y e. I ) |
8 |
|
dpjrid.6 |
|- ( ph -> Y =/= X ) |
9 |
|
fveq2 |
|- ( x = Y -> ( P ` x ) = ( P ` Y ) ) |
10 |
9
|
fveq1d |
|- ( x = Y -> ( ( P ` x ) ` A ) = ( ( P ` Y ) ` A ) ) |
11 |
|
eqeq1 |
|- ( x = Y -> ( x = X <-> Y = X ) ) |
12 |
11
|
ifbid |
|- ( x = Y -> if ( x = X , A , .0. ) = if ( Y = X , A , .0. ) ) |
13 |
10 12
|
eqeq12d |
|- ( x = Y -> ( ( ( P ` x ) ` A ) = if ( x = X , A , .0. ) <-> ( ( P ` Y ) ` A ) = if ( Y = X , A , .0. ) ) ) |
14 |
|
eqid |
|- { h e. X_ i e. I ( S ` i ) | h finSupp .0. } = { h e. X_ i e. I ( S ` i ) | h finSupp .0. } |
15 |
|
eqid |
|- ( x e. I |-> if ( x = X , A , .0. ) ) = ( x e. I |-> if ( x = X , A , .0. ) ) |
16 |
6 14 1 2 4 5 15
|
dprdfid |
|- ( ph -> ( ( x e. I |-> if ( x = X , A , .0. ) ) e. { h e. X_ i e. I ( S ` i ) | h finSupp .0. } /\ ( G gsum ( x e. I |-> if ( x = X , A , .0. ) ) ) = A ) ) |
17 |
16
|
simprd |
|- ( ph -> ( G gsum ( x e. I |-> if ( x = X , A , .0. ) ) ) = A ) |
18 |
17
|
eqcomd |
|- ( ph -> A = ( G gsum ( x e. I |-> if ( x = X , A , .0. ) ) ) ) |
19 |
1 2 4
|
dprdub |
|- ( ph -> ( S ` X ) C_ ( G DProd S ) ) |
20 |
19 5
|
sseldd |
|- ( ph -> A e. ( G DProd S ) ) |
21 |
16
|
simpld |
|- ( ph -> ( x e. I |-> if ( x = X , A , .0. ) ) e. { h e. X_ i e. I ( S ` i ) | h finSupp .0. } ) |
22 |
1 2 3 20 6 14 21
|
dpjeq |
|- ( ph -> ( A = ( G gsum ( x e. I |-> if ( x = X , A , .0. ) ) ) <-> A. x e. I ( ( P ` x ) ` A ) = if ( x = X , A , .0. ) ) ) |
23 |
18 22
|
mpbid |
|- ( ph -> A. x e. I ( ( P ` x ) ` A ) = if ( x = X , A , .0. ) ) |
24 |
13 23 7
|
rspcdva |
|- ( ph -> ( ( P ` Y ) ` A ) = if ( Y = X , A , .0. ) ) |
25 |
|
ifnefalse |
|- ( Y =/= X -> if ( Y = X , A , .0. ) = .0. ) |
26 |
8 25
|
syl |
|- ( ph -> if ( Y = X , A , .0. ) = .0. ) |
27 |
24 26
|
eqtrd |
|- ( ph -> ( ( P ` Y ) ` A ) = .0. ) |