Step |
Hyp |
Ref |
Expression |
1 |
|
dpjfval.1 |
|- ( ph -> G dom DProd S ) |
2 |
|
dpjfval.2 |
|- ( ph -> dom S = I ) |
3 |
|
dpjfval.p |
|- P = ( G dProj S ) |
4 |
|
dpjfval.q |
|- Q = ( proj1 ` G ) |
5 |
|
dpjval.3 |
|- ( ph -> X e. I ) |
6 |
1 2 3 4
|
dpjfval |
|- ( ph -> P = ( x e. I |-> ( ( S ` x ) Q ( G DProd ( S |` ( I \ { x } ) ) ) ) ) ) |
7 |
|
simpr |
|- ( ( ph /\ x = X ) -> x = X ) |
8 |
7
|
fveq2d |
|- ( ( ph /\ x = X ) -> ( S ` x ) = ( S ` X ) ) |
9 |
7
|
sneqd |
|- ( ( ph /\ x = X ) -> { x } = { X } ) |
10 |
9
|
difeq2d |
|- ( ( ph /\ x = X ) -> ( I \ { x } ) = ( I \ { X } ) ) |
11 |
10
|
reseq2d |
|- ( ( ph /\ x = X ) -> ( S |` ( I \ { x } ) ) = ( S |` ( I \ { X } ) ) ) |
12 |
11
|
oveq2d |
|- ( ( ph /\ x = X ) -> ( G DProd ( S |` ( I \ { x } ) ) ) = ( G DProd ( S |` ( I \ { X } ) ) ) ) |
13 |
8 12
|
oveq12d |
|- ( ( ph /\ x = X ) -> ( ( S ` x ) Q ( G DProd ( S |` ( I \ { x } ) ) ) ) = ( ( S ` X ) Q ( G DProd ( S |` ( I \ { X } ) ) ) ) ) |
14 |
|
ovexd |
|- ( ph -> ( ( S ` X ) Q ( G DProd ( S |` ( I \ { X } ) ) ) ) e. _V ) |
15 |
6 13 5 14
|
fvmptd |
|- ( ph -> ( P ` X ) = ( ( S ` X ) Q ( G DProd ( S |` ( I \ { X } ) ) ) ) ) |