Step |
Hyp |
Ref |
Expression |
1 |
|
dplti.a |
|- A e. NN0 |
2 |
|
dplti.b |
|- B e. RR+ |
3 |
|
dplti.c |
|- C e. NN0 |
4 |
|
dplti.1 |
|- B < ; 1 0 |
5 |
|
dplti.2 |
|- ( A + 1 ) = C |
6 |
|
rpre |
|- ( B e. RR+ -> B e. RR ) |
7 |
2 6
|
ax-mp |
|- B e. RR |
8 |
1 7
|
dpval2 |
|- ( A . B ) = ( A + ( B / ; 1 0 ) ) |
9 |
|
10re |
|- ; 1 0 e. RR |
10 |
|
10pos |
|- 0 < ; 1 0 |
11 |
9 10
|
pm3.2i |
|- ( ; 1 0 e. RR /\ 0 < ; 1 0 ) |
12 |
|
elrp |
|- ( ; 1 0 e. RR+ <-> ( ; 1 0 e. RR /\ 0 < ; 1 0 ) ) |
13 |
11 12
|
mpbir |
|- ; 1 0 e. RR+ |
14 |
|
divlt1lt |
|- ( ( B e. RR /\ ; 1 0 e. RR+ ) -> ( ( B / ; 1 0 ) < 1 <-> B < ; 1 0 ) ) |
15 |
7 13 14
|
mp2an |
|- ( ( B / ; 1 0 ) < 1 <-> B < ; 1 0 ) |
16 |
4 15
|
mpbir |
|- ( B / ; 1 0 ) < 1 |
17 |
|
0re |
|- 0 e. RR |
18 |
17 10
|
gtneii |
|- ; 1 0 =/= 0 |
19 |
7 9 18
|
redivcli |
|- ( B / ; 1 0 ) e. RR |
20 |
|
1re |
|- 1 e. RR |
21 |
|
nn0ssre |
|- NN0 C_ RR |
22 |
21 1
|
sselii |
|- A e. RR |
23 |
19 20 22
|
ltadd2i |
|- ( ( B / ; 1 0 ) < 1 <-> ( A + ( B / ; 1 0 ) ) < ( A + 1 ) ) |
24 |
16 23
|
mpbi |
|- ( A + ( B / ; 1 0 ) ) < ( A + 1 ) |
25 |
8 24
|
eqbrtri |
|- ( A . B ) < ( A + 1 ) |
26 |
25 5
|
breqtri |
|- ( A . B ) < C |