| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dpmul.a |
|- A e. NN0 |
| 2 |
|
dpmul.b |
|- B e. NN0 |
| 3 |
|
dpmul.c |
|- C e. NN0 |
| 4 |
|
dpmul.d |
|- D e. NN0 |
| 5 |
|
dpmul.e |
|- E e. NN0 |
| 6 |
|
dpmul.g |
|- G e. NN0 |
| 7 |
|
dpmul.j |
|- J e. NN0 |
| 8 |
|
dpmul.k |
|- K e. NN0 |
| 9 |
|
dpmul.1 |
|- ( A x. C ) = F |
| 10 |
|
dpmul.2 |
|- ( A x. D ) = M |
| 11 |
|
dpmul.3 |
|- ( B x. C ) = L |
| 12 |
|
dpmul.4 |
|- ( B x. D ) = ; E K |
| 13 |
|
dpmul.5 |
|- ( ( L + M ) + E ) = ; G J |
| 14 |
|
dpmul.6 |
|- ( F + G ) = I |
| 15 |
1 2
|
deccl |
|- ; A B e. NN0 |
| 16 |
|
eqid |
|- ; C D = ; C D |
| 17 |
1 4
|
nn0mulcli |
|- ( A x. D ) e. NN0 |
| 18 |
10 17
|
eqeltrri |
|- M e. NN0 |
| 19 |
18 5
|
nn0addcli |
|- ( M + E ) e. NN0 |
| 20 |
|
eqid |
|- ; A B = ; A B |
| 21 |
3 1 2 20 9 11
|
decmul1 |
|- ( ; A B x. C ) = ; F L |
| 22 |
21
|
oveq1i |
|- ( ( ; A B x. C ) + ( M + E ) ) = ( ; F L + ( M + E ) ) |
| 23 |
|
dfdec10 |
|- ; F L = ( ( ; 1 0 x. F ) + L ) |
| 24 |
23
|
oveq1i |
|- ( ; F L + ( M + E ) ) = ( ( ( ; 1 0 x. F ) + L ) + ( M + E ) ) |
| 25 |
|
10nn0 |
|- ; 1 0 e. NN0 |
| 26 |
25
|
nn0cni |
|- ; 1 0 e. CC |
| 27 |
1 3
|
nn0mulcli |
|- ( A x. C ) e. NN0 |
| 28 |
9 27
|
eqeltrri |
|- F e. NN0 |
| 29 |
28
|
nn0cni |
|- F e. CC |
| 30 |
26 29
|
mulcli |
|- ( ; 1 0 x. F ) e. CC |
| 31 |
2 3
|
nn0mulcli |
|- ( B x. C ) e. NN0 |
| 32 |
11 31
|
eqeltrri |
|- L e. NN0 |
| 33 |
32
|
nn0cni |
|- L e. CC |
| 34 |
19
|
nn0cni |
|- ( M + E ) e. CC |
| 35 |
30 33 34
|
addassi |
|- ( ( ( ; 1 0 x. F ) + L ) + ( M + E ) ) = ( ( ; 1 0 x. F ) + ( L + ( M + E ) ) ) |
| 36 |
18
|
nn0cni |
|- M e. CC |
| 37 |
5
|
nn0cni |
|- E e. CC |
| 38 |
33 36 37
|
addassi |
|- ( ( L + M ) + E ) = ( L + ( M + E ) ) |
| 39 |
|
dfdec10 |
|- ; G J = ( ( ; 1 0 x. G ) + J ) |
| 40 |
13 38 39
|
3eqtr3ri |
|- ( ( ; 1 0 x. G ) + J ) = ( L + ( M + E ) ) |
| 41 |
40
|
oveq2i |
|- ( ( ; 1 0 x. F ) + ( ( ; 1 0 x. G ) + J ) ) = ( ( ; 1 0 x. F ) + ( L + ( M + E ) ) ) |
| 42 |
|
dfdec10 |
|- ; I J = ( ( ; 1 0 x. I ) + J ) |
| 43 |
6
|
nn0cni |
|- G e. CC |
| 44 |
26 29 43
|
adddii |
|- ( ; 1 0 x. ( F + G ) ) = ( ( ; 1 0 x. F ) + ( ; 1 0 x. G ) ) |
| 45 |
14
|
oveq2i |
|- ( ; 1 0 x. ( F + G ) ) = ( ; 1 0 x. I ) |
| 46 |
44 45
|
eqtr3i |
|- ( ( ; 1 0 x. F ) + ( ; 1 0 x. G ) ) = ( ; 1 0 x. I ) |
| 47 |
46
|
oveq1i |
|- ( ( ( ; 1 0 x. F ) + ( ; 1 0 x. G ) ) + J ) = ( ( ; 1 0 x. I ) + J ) |
| 48 |
26 43
|
mulcli |
|- ( ; 1 0 x. G ) e. CC |
| 49 |
7
|
nn0cni |
|- J e. CC |
| 50 |
30 48 49
|
addassi |
|- ( ( ( ; 1 0 x. F ) + ( ; 1 0 x. G ) ) + J ) = ( ( ; 1 0 x. F ) + ( ( ; 1 0 x. G ) + J ) ) |
| 51 |
42 47 50
|
3eqtr2ri |
|- ( ( ; 1 0 x. F ) + ( ( ; 1 0 x. G ) + J ) ) = ; I J |
| 52 |
35 41 51
|
3eqtr2i |
|- ( ( ( ; 1 0 x. F ) + L ) + ( M + E ) ) = ; I J |
| 53 |
22 24 52
|
3eqtri |
|- ( ( ; A B x. C ) + ( M + E ) ) = ; I J |
| 54 |
10
|
oveq1i |
|- ( ( A x. D ) + E ) = ( M + E ) |
| 55 |
4 1 2 20 8 5 54 12
|
decmul1c |
|- ( ; A B x. D ) = ; ( M + E ) K |
| 56 |
15 3 4 16 8 19 53 55
|
decmul2c |
|- ( ; A B x. ; C D ) = ; ; I J K |
| 57 |
2
|
nn0rei |
|- B e. RR |
| 58 |
|
dpcl |
|- ( ( A e. NN0 /\ B e. RR ) -> ( A . B ) e. RR ) |
| 59 |
1 57 58
|
mp2an |
|- ( A . B ) e. RR |
| 60 |
59
|
recni |
|- ( A . B ) e. CC |
| 61 |
4
|
nn0rei |
|- D e. RR |
| 62 |
|
dpcl |
|- ( ( C e. NN0 /\ D e. RR ) -> ( C . D ) e. RR ) |
| 63 |
3 61 62
|
mp2an |
|- ( C . D ) e. RR |
| 64 |
63
|
recni |
|- ( C . D ) e. CC |
| 65 |
60 64 26 26
|
mul4i |
|- ( ( ( A . B ) x. ( C . D ) ) x. ( ; 1 0 x. ; 1 0 ) ) = ( ( ( A . B ) x. ; 1 0 ) x. ( ( C . D ) x. ; 1 0 ) ) |
| 66 |
25
|
dec0u |
|- ( ; 1 0 x. ; 1 0 ) = ; ; 1 0 0 |
| 67 |
66
|
oveq2i |
|- ( ( ( A . B ) x. ( C . D ) ) x. ( ; 1 0 x. ; 1 0 ) ) = ( ( ( A . B ) x. ( C . D ) ) x. ; ; 1 0 0 ) |
| 68 |
1 57
|
dpmul10 |
|- ( ( A . B ) x. ; 1 0 ) = ; A B |
| 69 |
3 61
|
dpmul10 |
|- ( ( C . D ) x. ; 1 0 ) = ; C D |
| 70 |
68 69
|
oveq12i |
|- ( ( ( A . B ) x. ; 1 0 ) x. ( ( C . D ) x. ; 1 0 ) ) = ( ; A B x. ; C D ) |
| 71 |
65 67 70
|
3eqtr3i |
|- ( ( ( A . B ) x. ( C . D ) ) x. ; ; 1 0 0 ) = ( ; A B x. ; C D ) |
| 72 |
28 6
|
nn0addcli |
|- ( F + G ) e. NN0 |
| 73 |
14 72
|
eqeltrri |
|- I e. NN0 |
| 74 |
8
|
nn0rei |
|- K e. RR |
| 75 |
73 7 74
|
dpmul100 |
|- ( ( I . _ J K ) x. ; ; 1 0 0 ) = ; ; I J K |
| 76 |
56 71 75
|
3eqtr4i |
|- ( ( ( A . B ) x. ( C . D ) ) x. ; ; 1 0 0 ) = ( ( I . _ J K ) x. ; ; 1 0 0 ) |
| 77 |
60 64
|
mulcli |
|- ( ( A . B ) x. ( C . D ) ) e. CC |
| 78 |
7
|
nn0rei |
|- J e. RR |
| 79 |
|
dp2cl |
|- ( ( J e. RR /\ K e. RR ) -> _ J K e. RR ) |
| 80 |
78 74 79
|
mp2an |
|- _ J K e. RR |
| 81 |
|
dpcl |
|- ( ( I e. NN0 /\ _ J K e. RR ) -> ( I . _ J K ) e. RR ) |
| 82 |
73 80 81
|
mp2an |
|- ( I . _ J K ) e. RR |
| 83 |
82
|
recni |
|- ( I . _ J K ) e. CC |
| 84 |
|
10nn |
|- ; 1 0 e. NN |
| 85 |
84
|
decnncl2 |
|- ; ; 1 0 0 e. NN |
| 86 |
85
|
nncni |
|- ; ; 1 0 0 e. CC |
| 87 |
85
|
nnne0i |
|- ; ; 1 0 0 =/= 0 |
| 88 |
86 87
|
pm3.2i |
|- ( ; ; 1 0 0 e. CC /\ ; ; 1 0 0 =/= 0 ) |
| 89 |
|
mulcan2 |
|- ( ( ( ( A . B ) x. ( C . D ) ) e. CC /\ ( I . _ J K ) e. CC /\ ( ; ; 1 0 0 e. CC /\ ; ; 1 0 0 =/= 0 ) ) -> ( ( ( ( A . B ) x. ( C . D ) ) x. ; ; 1 0 0 ) = ( ( I . _ J K ) x. ; ; 1 0 0 ) <-> ( ( A . B ) x. ( C . D ) ) = ( I . _ J K ) ) ) |
| 90 |
77 83 88 89
|
mp3an |
|- ( ( ( ( A . B ) x. ( C . D ) ) x. ; ; 1 0 0 ) = ( ( I . _ J K ) x. ; ; 1 0 0 ) <-> ( ( A . B ) x. ( C . D ) ) = ( I . _ J K ) ) |
| 91 |
76 90
|
mpbi |
|- ( ( A . B ) x. ( C . D ) ) = ( I . _ J K ) |