Step |
Hyp |
Ref |
Expression |
1 |
|
dpval2.a |
|- A e. NN0 |
2 |
|
dpval2.b |
|- B e. RR |
3 |
2
|
recni |
|- B e. CC |
4 |
|
10nn |
|- ; 1 0 e. NN |
5 |
4
|
nncni |
|- ; 1 0 e. CC |
6 |
4
|
nnne0i |
|- ; 1 0 =/= 0 |
7 |
3 5 6
|
divcan2i |
|- ( ; 1 0 x. ( B / ; 1 0 ) ) = B |
8 |
7
|
oveq2i |
|- ( ( ; 1 0 x. A ) + ( ; 1 0 x. ( B / ; 1 0 ) ) ) = ( ( ; 1 0 x. A ) + B ) |
9 |
1 2
|
dpval2 |
|- ( A . B ) = ( A + ( B / ; 1 0 ) ) |
10 |
9
|
oveq2i |
|- ( ; 1 0 x. ( A . B ) ) = ( ; 1 0 x. ( A + ( B / ; 1 0 ) ) ) |
11 |
|
dpcl |
|- ( ( A e. NN0 /\ B e. RR ) -> ( A . B ) e. RR ) |
12 |
1 2 11
|
mp2an |
|- ( A . B ) e. RR |
13 |
12
|
recni |
|- ( A . B ) e. CC |
14 |
5 13
|
mulcomi |
|- ( ; 1 0 x. ( A . B ) ) = ( ( A . B ) x. ; 1 0 ) |
15 |
1
|
nn0cni |
|- A e. CC |
16 |
3 5 6
|
divcli |
|- ( B / ; 1 0 ) e. CC |
17 |
5 15 16
|
adddii |
|- ( ; 1 0 x. ( A + ( B / ; 1 0 ) ) ) = ( ( ; 1 0 x. A ) + ( ; 1 0 x. ( B / ; 1 0 ) ) ) |
18 |
10 14 17
|
3eqtr3i |
|- ( ( A . B ) x. ; 1 0 ) = ( ( ; 1 0 x. A ) + ( ; 1 0 x. ( B / ; 1 0 ) ) ) |
19 |
|
dfdec10 |
|- ; A B = ( ( ; 1 0 x. A ) + B ) |
20 |
8 18 19
|
3eqtr4i |
|- ( ( A . B ) x. ; 1 0 ) = ; A B |