Step |
Hyp |
Ref |
Expression |
1 |
|
dp3mul10.a |
|- A e. NN0 |
2 |
|
dp3mul10.b |
|- B e. NN0 |
3 |
|
dp3mul10.c |
|- C e. RR |
4 |
2
|
nn0rei |
|- B e. RR |
5 |
|
dp2cl |
|- ( ( B e. RR /\ C e. RR ) -> _ B C e. RR ) |
6 |
4 3 5
|
mp2an |
|- _ B C e. RR |
7 |
1 6
|
dpval2 |
|- ( A . _ B C ) = ( A + ( _ B C / ; 1 0 ) ) |
8 |
1
|
nn0cni |
|- A e. CC |
9 |
6
|
recni |
|- _ B C e. CC |
10 |
|
10nn0 |
|- ; 1 0 e. NN0 |
11 |
10
|
nn0cni |
|- ; 1 0 e. CC |
12 |
|
10nn |
|- ; 1 0 e. NN |
13 |
12
|
nnne0i |
|- ; 1 0 =/= 0 |
14 |
9 11 13
|
divcli |
|- ( _ B C / ; 1 0 ) e. CC |
15 |
8 14
|
addcli |
|- ( A + ( _ B C / ; 1 0 ) ) e. CC |
16 |
7 15
|
eqeltri |
|- ( A . _ B C ) e. CC |
17 |
16 11 11
|
mulassi |
|- ( ( ( A . _ B C ) x. ; 1 0 ) x. ; 1 0 ) = ( ( A . _ B C ) x. ( ; 1 0 x. ; 1 0 ) ) |
18 |
1 2 3
|
dfdec100 |
|- ; ; A B C = ( ( ; ; 1 0 0 x. A ) + ; B C ) |
19 |
11 8 11
|
mul32i |
|- ( ( ; 1 0 x. A ) x. ; 1 0 ) = ( ( ; 1 0 x. ; 1 0 ) x. A ) |
20 |
10
|
dec0u |
|- ( ; 1 0 x. ; 1 0 ) = ; ; 1 0 0 |
21 |
20
|
oveq1i |
|- ( ( ; 1 0 x. ; 1 0 ) x. A ) = ( ; ; 1 0 0 x. A ) |
22 |
19 21
|
eqtri |
|- ( ( ; 1 0 x. A ) x. ; 1 0 ) = ( ; ; 1 0 0 x. A ) |
23 |
2 3
|
dpval3 |
|- ( B . C ) = _ B C |
24 |
23
|
oveq1i |
|- ( ( B . C ) x. ; 1 0 ) = ( _ B C x. ; 1 0 ) |
25 |
2 3
|
dpmul10 |
|- ( ( B . C ) x. ; 1 0 ) = ; B C |
26 |
24 25
|
eqtr3i |
|- ( _ B C x. ; 1 0 ) = ; B C |
27 |
22 26
|
oveq12i |
|- ( ( ( ; 1 0 x. A ) x. ; 1 0 ) + ( _ B C x. ; 1 0 ) ) = ( ( ; ; 1 0 0 x. A ) + ; B C ) |
28 |
1 6
|
dpmul10 |
|- ( ( A . _ B C ) x. ; 1 0 ) = ; A _ B C |
29 |
|
dfdec10 |
|- ; A _ B C = ( ( ; 1 0 x. A ) + _ B C ) |
30 |
28 29
|
eqtri |
|- ( ( A . _ B C ) x. ; 1 0 ) = ( ( ; 1 0 x. A ) + _ B C ) |
31 |
30
|
oveq1i |
|- ( ( ( A . _ B C ) x. ; 1 0 ) x. ; 1 0 ) = ( ( ( ; 1 0 x. A ) + _ B C ) x. ; 1 0 ) |
32 |
11 8
|
mulcli |
|- ( ; 1 0 x. A ) e. CC |
33 |
32 9 11
|
adddiri |
|- ( ( ( ; 1 0 x. A ) + _ B C ) x. ; 1 0 ) = ( ( ( ; 1 0 x. A ) x. ; 1 0 ) + ( _ B C x. ; 1 0 ) ) |
34 |
31 33
|
eqtr2i |
|- ( ( ( ; 1 0 x. A ) x. ; 1 0 ) + ( _ B C x. ; 1 0 ) ) = ( ( ( A . _ B C ) x. ; 1 0 ) x. ; 1 0 ) |
35 |
18 27 34
|
3eqtr2ri |
|- ( ( ( A . _ B C ) x. ; 1 0 ) x. ; 1 0 ) = ; ; A B C |
36 |
20
|
oveq2i |
|- ( ( A . _ B C ) x. ( ; 1 0 x. ; 1 0 ) ) = ( ( A . _ B C ) x. ; ; 1 0 0 ) |
37 |
17 35 36
|
3eqtr3ri |
|- ( ( A . _ B C ) x. ; ; 1 0 0 ) = ; ; A B C |