Step |
Hyp |
Ref |
Expression |
1 |
|
dpmul1000.a |
|- A e. NN0 |
2 |
|
dpmul1000.b |
|- B e. NN0 |
3 |
|
dpmul1000.c |
|- C e. NN0 |
4 |
|
dpmul1000.d |
|- D e. RR |
5 |
2
|
nn0rei |
|- B e. RR |
6 |
3
|
nn0rei |
|- C e. RR |
7 |
|
dp2cl |
|- ( ( C e. RR /\ D e. RR ) -> _ C D e. RR ) |
8 |
6 4 7
|
mp2an |
|- _ C D e. RR |
9 |
|
dp2cl |
|- ( ( B e. RR /\ _ C D e. RR ) -> _ B _ C D e. RR ) |
10 |
5 8 9
|
mp2an |
|- _ B _ C D e. RR |
11 |
|
dpcl |
|- ( ( A e. NN0 /\ _ B _ C D e. RR ) -> ( A . _ B _ C D ) e. RR ) |
12 |
1 10 11
|
mp2an |
|- ( A . _ B _ C D ) e. RR |
13 |
12
|
recni |
|- ( A . _ B _ C D ) e. CC |
14 |
|
10nn0 |
|- ; 1 0 e. NN0 |
15 |
|
0nn0 |
|- 0 e. NN0 |
16 |
14 15
|
deccl |
|- ; ; 1 0 0 e. NN0 |
17 |
16
|
nn0cni |
|- ; ; 1 0 0 e. CC |
18 |
14
|
nn0cni |
|- ; 1 0 e. CC |
19 |
13 17 18
|
mulassi |
|- ( ( ( A . _ B _ C D ) x. ; ; 1 0 0 ) x. ; 1 0 ) = ( ( A . _ B _ C D ) x. ( ; ; 1 0 0 x. ; 1 0 ) ) |
20 |
1 2 8
|
dpmul100 |
|- ( ( A . _ B _ C D ) x. ; ; 1 0 0 ) = ; ; A B _ C D |
21 |
20
|
oveq1i |
|- ( ( ( A . _ B _ C D ) x. ; ; 1 0 0 ) x. ; 1 0 ) = ( ; ; A B _ C D x. ; 1 0 ) |
22 |
16
|
dec0u |
|- ( ; 1 0 x. ; ; 1 0 0 ) = ; ; ; 1 0 0 0 |
23 |
18 17 22
|
mulcomli |
|- ( ; ; 1 0 0 x. ; 1 0 ) = ; ; ; 1 0 0 0 |
24 |
23
|
oveq2i |
|- ( ( A . _ B _ C D ) x. ( ; ; 1 0 0 x. ; 1 0 ) ) = ( ( A . _ B _ C D ) x. ; ; ; 1 0 0 0 ) |
25 |
19 21 24
|
3eqtr3i |
|- ( ; ; A B _ C D x. ; 1 0 ) = ( ( A . _ B _ C D ) x. ; ; ; 1 0 0 0 ) |
26 |
|
dfdec10 |
|- ; ; A B _ C D = ( ( ; 1 0 x. ; A B ) + _ C D ) |
27 |
26
|
oveq1i |
|- ( ; ; A B _ C D x. ; 1 0 ) = ( ( ( ; 1 0 x. ; A B ) + _ C D ) x. ; 1 0 ) |
28 |
1 2
|
deccl |
|- ; A B e. NN0 |
29 |
28
|
nn0cni |
|- ; A B e. CC |
30 |
18 29
|
mulcli |
|- ( ; 1 0 x. ; A B ) e. CC |
31 |
8
|
recni |
|- _ C D e. CC |
32 |
30 31 18
|
adddiri |
|- ( ( ( ; 1 0 x. ; A B ) + _ C D ) x. ; 1 0 ) = ( ( ( ; 1 0 x. ; A B ) x. ; 1 0 ) + ( _ C D x. ; 1 0 ) ) |
33 |
28 3 4
|
dfdec100 |
|- ; ; ; A B C D = ( ( ; ; 1 0 0 x. ; A B ) + ; C D ) |
34 |
14
|
dec0u |
|- ( ; 1 0 x. ; 1 0 ) = ; ; 1 0 0 |
35 |
34
|
oveq1i |
|- ( ( ; 1 0 x. ; 1 0 ) x. ; A B ) = ( ; ; 1 0 0 x. ; A B ) |
36 |
18 18 29
|
mul32i |
|- ( ( ; 1 0 x. ; 1 0 ) x. ; A B ) = ( ( ; 1 0 x. ; A B ) x. ; 1 0 ) |
37 |
35 36
|
eqtr3i |
|- ( ; ; 1 0 0 x. ; A B ) = ( ( ; 1 0 x. ; A B ) x. ; 1 0 ) |
38 |
3 4
|
dpmul10 |
|- ( ( C . D ) x. ; 1 0 ) = ; C D |
39 |
|
dpval |
|- ( ( C e. NN0 /\ D e. RR ) -> ( C . D ) = _ C D ) |
40 |
3 4 39
|
mp2an |
|- ( C . D ) = _ C D |
41 |
40
|
oveq1i |
|- ( ( C . D ) x. ; 1 0 ) = ( _ C D x. ; 1 0 ) |
42 |
38 41
|
eqtr3i |
|- ; C D = ( _ C D x. ; 1 0 ) |
43 |
37 42
|
oveq12i |
|- ( ( ; ; 1 0 0 x. ; A B ) + ; C D ) = ( ( ( ; 1 0 x. ; A B ) x. ; 1 0 ) + ( _ C D x. ; 1 0 ) ) |
44 |
33 43
|
eqtr2i |
|- ( ( ( ; 1 0 x. ; A B ) x. ; 1 0 ) + ( _ C D x. ; 1 0 ) ) = ; ; ; A B C D |
45 |
27 32 44
|
3eqtri |
|- ( ; ; A B _ C D x. ; 1 0 ) = ; ; ; A B C D |
46 |
25 45
|
eqtr3i |
|- ( ( A . _ B _ C D ) x. ; ; ; 1 0 0 0 ) = ; ; ; A B C D |