| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							dprd0.0 | 
							 |-  .0. = ( 0g ` G )  | 
						
						
							| 2 | 
							
								
							 | 
							0ex | 
							 |-  (/) e. _V  | 
						
						
							| 3 | 
							
								1
							 | 
							dprdz | 
							 |-  ( ( G e. Grp /\ (/) e. _V ) -> ( G dom DProd ( x e. (/) |-> { .0. } ) /\ ( G DProd ( x e. (/) |-> { .0. } ) ) = { .0. } ) ) | 
						
						
							| 4 | 
							
								2 3
							 | 
							mpan2 | 
							 |-  ( G e. Grp -> ( G dom DProd ( x e. (/) |-> { .0. } ) /\ ( G DProd ( x e. (/) |-> { .0. } ) ) = { .0. } ) ) | 
						
						
							| 5 | 
							
								
							 | 
							mpt0 | 
							 |-  ( x e. (/) |-> { .0. } ) = (/) | 
						
						
							| 6 | 
							
								5
							 | 
							breq2i | 
							 |-  ( G dom DProd ( x e. (/) |-> { .0. } ) <-> G dom DProd (/) ) | 
						
						
							| 7 | 
							
								5
							 | 
							oveq2i | 
							 |-  ( G DProd ( x e. (/) |-> { .0. } ) ) = ( G DProd (/) ) | 
						
						
							| 8 | 
							
								7
							 | 
							eqeq1i | 
							 |-  ( ( G DProd ( x e. (/) |-> { .0. } ) ) = { .0. } <-> ( G DProd (/) ) = { .0. } ) | 
						
						
							| 9 | 
							
								6 8
							 | 
							anbi12i | 
							 |-  ( ( G dom DProd ( x e. (/) |-> { .0. } ) /\ ( G DProd ( x e. (/) |-> { .0. } ) ) = { .0. } ) <-> ( G dom DProd (/) /\ ( G DProd (/) ) = { .0. } ) ) | 
						
						
							| 10 | 
							
								4 9
							 | 
							sylib | 
							 |-  ( G e. Grp -> ( G dom DProd (/) /\ ( G DProd (/) ) = { .0. } ) ) |