Step |
Hyp |
Ref |
Expression |
1 |
|
dprd2d.1 |
|- ( ph -> Rel A ) |
2 |
|
dprd2d.2 |
|- ( ph -> S : A --> ( SubGrp ` G ) ) |
3 |
|
dprd2d.3 |
|- ( ph -> dom A C_ I ) |
4 |
|
dprd2d.4 |
|- ( ( ph /\ i e. I ) -> G dom DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) |
5 |
|
dprd2d.5 |
|- ( ph -> G dom DProd ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ) |
6 |
|
dprd2d.k |
|- K = ( mrCls ` ( SubGrp ` G ) ) |
7 |
|
eqid |
|- ( Cntz ` G ) = ( Cntz ` G ) |
8 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
9 |
|
dprdgrp |
|- ( G dom DProd ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) -> G e. Grp ) |
10 |
5 9
|
syl |
|- ( ph -> G e. Grp ) |
11 |
|
resiun2 |
|- ( A |` U_ i e. I { i } ) = U_ i e. I ( A |` { i } ) |
12 |
|
iunid |
|- U_ i e. I { i } = I |
13 |
12
|
reseq2i |
|- ( A |` U_ i e. I { i } ) = ( A |` I ) |
14 |
11 13
|
eqtr3i |
|- U_ i e. I ( A |` { i } ) = ( A |` I ) |
15 |
|
relssres |
|- ( ( Rel A /\ dom A C_ I ) -> ( A |` I ) = A ) |
16 |
1 3 15
|
syl2anc |
|- ( ph -> ( A |` I ) = A ) |
17 |
14 16
|
eqtrid |
|- ( ph -> U_ i e. I ( A |` { i } ) = A ) |
18 |
|
ovex |
|- ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) e. _V |
19 |
|
eqid |
|- ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) = ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) |
20 |
18 19
|
dmmpti |
|- dom ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) = I |
21 |
|
reldmdprd |
|- Rel dom DProd |
22 |
21
|
brrelex2i |
|- ( G dom DProd ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) -> ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) e. _V ) |
23 |
|
dmexg |
|- ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) e. _V -> dom ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) e. _V ) |
24 |
5 22 23
|
3syl |
|- ( ph -> dom ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) e. _V ) |
25 |
20 24
|
eqeltrrid |
|- ( ph -> I e. _V ) |
26 |
|
ressn |
|- ( A |` { i } ) = ( { i } X. ( A " { i } ) ) |
27 |
|
snex |
|- { i } e. _V |
28 |
|
ovex |
|- ( i S j ) e. _V |
29 |
|
eqid |
|- ( j e. ( A " { i } ) |-> ( i S j ) ) = ( j e. ( A " { i } ) |-> ( i S j ) ) |
30 |
28 29
|
dmmpti |
|- dom ( j e. ( A " { i } ) |-> ( i S j ) ) = ( A " { i } ) |
31 |
21
|
brrelex2i |
|- ( G dom DProd ( j e. ( A " { i } ) |-> ( i S j ) ) -> ( j e. ( A " { i } ) |-> ( i S j ) ) e. _V ) |
32 |
|
dmexg |
|- ( ( j e. ( A " { i } ) |-> ( i S j ) ) e. _V -> dom ( j e. ( A " { i } ) |-> ( i S j ) ) e. _V ) |
33 |
4 31 32
|
3syl |
|- ( ( ph /\ i e. I ) -> dom ( j e. ( A " { i } ) |-> ( i S j ) ) e. _V ) |
34 |
30 33
|
eqeltrrid |
|- ( ( ph /\ i e. I ) -> ( A " { i } ) e. _V ) |
35 |
|
xpexg |
|- ( ( { i } e. _V /\ ( A " { i } ) e. _V ) -> ( { i } X. ( A " { i } ) ) e. _V ) |
36 |
27 34 35
|
sylancr |
|- ( ( ph /\ i e. I ) -> ( { i } X. ( A " { i } ) ) e. _V ) |
37 |
26 36
|
eqeltrid |
|- ( ( ph /\ i e. I ) -> ( A |` { i } ) e. _V ) |
38 |
37
|
ralrimiva |
|- ( ph -> A. i e. I ( A |` { i } ) e. _V ) |
39 |
|
iunexg |
|- ( ( I e. _V /\ A. i e. I ( A |` { i } ) e. _V ) -> U_ i e. I ( A |` { i } ) e. _V ) |
40 |
25 38 39
|
syl2anc |
|- ( ph -> U_ i e. I ( A |` { i } ) e. _V ) |
41 |
17 40
|
eqeltrrd |
|- ( ph -> A e. _V ) |
42 |
|
sneq |
|- ( i = ( 1st ` x ) -> { i } = { ( 1st ` x ) } ) |
43 |
42
|
imaeq2d |
|- ( i = ( 1st ` x ) -> ( A " { i } ) = ( A " { ( 1st ` x ) } ) ) |
44 |
|
oveq1 |
|- ( i = ( 1st ` x ) -> ( i S j ) = ( ( 1st ` x ) S j ) ) |
45 |
43 44
|
mpteq12dv |
|- ( i = ( 1st ` x ) -> ( j e. ( A " { i } ) |-> ( i S j ) ) = ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) |
46 |
45
|
breq2d |
|- ( i = ( 1st ` x ) -> ( G dom DProd ( j e. ( A " { i } ) |-> ( i S j ) ) <-> G dom DProd ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) ) |
47 |
4
|
ralrimiva |
|- ( ph -> A. i e. I G dom DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) |
48 |
47
|
adantr |
|- ( ( ph /\ x e. A ) -> A. i e. I G dom DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) |
49 |
3
|
adantr |
|- ( ( ph /\ x e. A ) -> dom A C_ I ) |
50 |
|
1stdm |
|- ( ( Rel A /\ x e. A ) -> ( 1st ` x ) e. dom A ) |
51 |
1 50
|
sylan |
|- ( ( ph /\ x e. A ) -> ( 1st ` x ) e. dom A ) |
52 |
49 51
|
sseldd |
|- ( ( ph /\ x e. A ) -> ( 1st ` x ) e. I ) |
53 |
46 48 52
|
rspcdva |
|- ( ( ph /\ x e. A ) -> G dom DProd ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) |
54 |
53
|
3ad2antr1 |
|- ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) -> G dom DProd ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) |
55 |
54
|
adantr |
|- ( ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) /\ ( 1st ` x ) = ( 1st ` y ) ) -> G dom DProd ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) |
56 |
|
ovex |
|- ( ( 1st ` x ) S j ) e. _V |
57 |
|
eqid |
|- ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) = ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) |
58 |
56 57
|
dmmpti |
|- dom ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) = ( A " { ( 1st ` x ) } ) |
59 |
58
|
a1i |
|- ( ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) /\ ( 1st ` x ) = ( 1st ` y ) ) -> dom ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) = ( A " { ( 1st ` x ) } ) ) |
60 |
|
1st2nd |
|- ( ( Rel A /\ x e. A ) -> x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) |
61 |
1 60
|
sylan |
|- ( ( ph /\ x e. A ) -> x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) |
62 |
|
simpr |
|- ( ( ph /\ x e. A ) -> x e. A ) |
63 |
61 62
|
eqeltrrd |
|- ( ( ph /\ x e. A ) -> <. ( 1st ` x ) , ( 2nd ` x ) >. e. A ) |
64 |
|
df-br |
|- ( ( 1st ` x ) A ( 2nd ` x ) <-> <. ( 1st ` x ) , ( 2nd ` x ) >. e. A ) |
65 |
63 64
|
sylibr |
|- ( ( ph /\ x e. A ) -> ( 1st ` x ) A ( 2nd ` x ) ) |
66 |
1
|
adantr |
|- ( ( ph /\ x e. A ) -> Rel A ) |
67 |
|
elrelimasn |
|- ( Rel A -> ( ( 2nd ` x ) e. ( A " { ( 1st ` x ) } ) <-> ( 1st ` x ) A ( 2nd ` x ) ) ) |
68 |
66 67
|
syl |
|- ( ( ph /\ x e. A ) -> ( ( 2nd ` x ) e. ( A " { ( 1st ` x ) } ) <-> ( 1st ` x ) A ( 2nd ` x ) ) ) |
69 |
65 68
|
mpbird |
|- ( ( ph /\ x e. A ) -> ( 2nd ` x ) e. ( A " { ( 1st ` x ) } ) ) |
70 |
69
|
3ad2antr1 |
|- ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) -> ( 2nd ` x ) e. ( A " { ( 1st ` x ) } ) ) |
71 |
70
|
adantr |
|- ( ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) /\ ( 1st ` x ) = ( 1st ` y ) ) -> ( 2nd ` x ) e. ( A " { ( 1st ` x ) } ) ) |
72 |
1
|
adantr |
|- ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) -> Rel A ) |
73 |
|
simpr2 |
|- ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) -> y e. A ) |
74 |
|
1st2nd |
|- ( ( Rel A /\ y e. A ) -> y = <. ( 1st ` y ) , ( 2nd ` y ) >. ) |
75 |
72 73 74
|
syl2anc |
|- ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) -> y = <. ( 1st ` y ) , ( 2nd ` y ) >. ) |
76 |
75 73
|
eqeltrrd |
|- ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) -> <. ( 1st ` y ) , ( 2nd ` y ) >. e. A ) |
77 |
|
df-br |
|- ( ( 1st ` y ) A ( 2nd ` y ) <-> <. ( 1st ` y ) , ( 2nd ` y ) >. e. A ) |
78 |
76 77
|
sylibr |
|- ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) -> ( 1st ` y ) A ( 2nd ` y ) ) |
79 |
|
elrelimasn |
|- ( Rel A -> ( ( 2nd ` y ) e. ( A " { ( 1st ` y ) } ) <-> ( 1st ` y ) A ( 2nd ` y ) ) ) |
80 |
72 79
|
syl |
|- ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) -> ( ( 2nd ` y ) e. ( A " { ( 1st ` y ) } ) <-> ( 1st ` y ) A ( 2nd ` y ) ) ) |
81 |
78 80
|
mpbird |
|- ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) -> ( 2nd ` y ) e. ( A " { ( 1st ` y ) } ) ) |
82 |
81
|
adantr |
|- ( ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) /\ ( 1st ` x ) = ( 1st ` y ) ) -> ( 2nd ` y ) e. ( A " { ( 1st ` y ) } ) ) |
83 |
|
simpr |
|- ( ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) /\ ( 1st ` x ) = ( 1st ` y ) ) -> ( 1st ` x ) = ( 1st ` y ) ) |
84 |
83
|
sneqd |
|- ( ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) /\ ( 1st ` x ) = ( 1st ` y ) ) -> { ( 1st ` x ) } = { ( 1st ` y ) } ) |
85 |
84
|
imaeq2d |
|- ( ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) /\ ( 1st ` x ) = ( 1st ` y ) ) -> ( A " { ( 1st ` x ) } ) = ( A " { ( 1st ` y ) } ) ) |
86 |
82 85
|
eleqtrrd |
|- ( ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) /\ ( 1st ` x ) = ( 1st ` y ) ) -> ( 2nd ` y ) e. ( A " { ( 1st ` x ) } ) ) |
87 |
|
simplr3 |
|- ( ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) /\ ( 1st ` x ) = ( 1st ` y ) ) -> x =/= y ) |
88 |
|
simpr1 |
|- ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) -> x e. A ) |
89 |
72 88 60
|
syl2anc |
|- ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) -> x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) |
90 |
89 75
|
eqeq12d |
|- ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) -> ( x = y <-> <. ( 1st ` x ) , ( 2nd ` x ) >. = <. ( 1st ` y ) , ( 2nd ` y ) >. ) ) |
91 |
|
fvex |
|- ( 1st ` x ) e. _V |
92 |
|
fvex |
|- ( 2nd ` x ) e. _V |
93 |
91 92
|
opth |
|- ( <. ( 1st ` x ) , ( 2nd ` x ) >. = <. ( 1st ` y ) , ( 2nd ` y ) >. <-> ( ( 1st ` x ) = ( 1st ` y ) /\ ( 2nd ` x ) = ( 2nd ` y ) ) ) |
94 |
90 93
|
bitrdi |
|- ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) -> ( x = y <-> ( ( 1st ` x ) = ( 1st ` y ) /\ ( 2nd ` x ) = ( 2nd ` y ) ) ) ) |
95 |
94
|
baibd |
|- ( ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) /\ ( 1st ` x ) = ( 1st ` y ) ) -> ( x = y <-> ( 2nd ` x ) = ( 2nd ` y ) ) ) |
96 |
95
|
necon3bid |
|- ( ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) /\ ( 1st ` x ) = ( 1st ` y ) ) -> ( x =/= y <-> ( 2nd ` x ) =/= ( 2nd ` y ) ) ) |
97 |
87 96
|
mpbid |
|- ( ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) /\ ( 1st ` x ) = ( 1st ` y ) ) -> ( 2nd ` x ) =/= ( 2nd ` y ) ) |
98 |
55 59 71 86 97 7
|
dprdcntz |
|- ( ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) /\ ( 1st ` x ) = ( 1st ` y ) ) -> ( ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ` ( 2nd ` x ) ) C_ ( ( Cntz ` G ) ` ( ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ` ( 2nd ` y ) ) ) ) |
99 |
|
df-ov |
|- ( ( 1st ` x ) S ( 2nd ` x ) ) = ( S ` <. ( 1st ` x ) , ( 2nd ` x ) >. ) |
100 |
|
oveq2 |
|- ( j = ( 2nd ` x ) -> ( ( 1st ` x ) S j ) = ( ( 1st ` x ) S ( 2nd ` x ) ) ) |
101 |
100 57 56
|
fvmpt3i |
|- ( ( 2nd ` x ) e. ( A " { ( 1st ` x ) } ) -> ( ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ` ( 2nd ` x ) ) = ( ( 1st ` x ) S ( 2nd ` x ) ) ) |
102 |
70 101
|
syl |
|- ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) -> ( ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ` ( 2nd ` x ) ) = ( ( 1st ` x ) S ( 2nd ` x ) ) ) |
103 |
89
|
fveq2d |
|- ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) -> ( S ` x ) = ( S ` <. ( 1st ` x ) , ( 2nd ` x ) >. ) ) |
104 |
99 102 103
|
3eqtr4a |
|- ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) -> ( ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ` ( 2nd ` x ) ) = ( S ` x ) ) |
105 |
104
|
adantr |
|- ( ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) /\ ( 1st ` x ) = ( 1st ` y ) ) -> ( ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ` ( 2nd ` x ) ) = ( S ` x ) ) |
106 |
83
|
oveq1d |
|- ( ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) /\ ( 1st ` x ) = ( 1st ` y ) ) -> ( ( 1st ` x ) S j ) = ( ( 1st ` y ) S j ) ) |
107 |
85 106
|
mpteq12dv |
|- ( ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) /\ ( 1st ` x ) = ( 1st ` y ) ) -> ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) = ( j e. ( A " { ( 1st ` y ) } ) |-> ( ( 1st ` y ) S j ) ) ) |
108 |
107
|
fveq1d |
|- ( ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) /\ ( 1st ` x ) = ( 1st ` y ) ) -> ( ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ` ( 2nd ` y ) ) = ( ( j e. ( A " { ( 1st ` y ) } ) |-> ( ( 1st ` y ) S j ) ) ` ( 2nd ` y ) ) ) |
109 |
|
df-ov |
|- ( ( 1st ` y ) S ( 2nd ` y ) ) = ( S ` <. ( 1st ` y ) , ( 2nd ` y ) >. ) |
110 |
|
oveq2 |
|- ( j = ( 2nd ` y ) -> ( ( 1st ` y ) S j ) = ( ( 1st ` y ) S ( 2nd ` y ) ) ) |
111 |
|
eqid |
|- ( j e. ( A " { ( 1st ` y ) } ) |-> ( ( 1st ` y ) S j ) ) = ( j e. ( A " { ( 1st ` y ) } ) |-> ( ( 1st ` y ) S j ) ) |
112 |
|
ovex |
|- ( ( 1st ` y ) S j ) e. _V |
113 |
110 111 112
|
fvmpt3i |
|- ( ( 2nd ` y ) e. ( A " { ( 1st ` y ) } ) -> ( ( j e. ( A " { ( 1st ` y ) } ) |-> ( ( 1st ` y ) S j ) ) ` ( 2nd ` y ) ) = ( ( 1st ` y ) S ( 2nd ` y ) ) ) |
114 |
81 113
|
syl |
|- ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) -> ( ( j e. ( A " { ( 1st ` y ) } ) |-> ( ( 1st ` y ) S j ) ) ` ( 2nd ` y ) ) = ( ( 1st ` y ) S ( 2nd ` y ) ) ) |
115 |
75
|
fveq2d |
|- ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) -> ( S ` y ) = ( S ` <. ( 1st ` y ) , ( 2nd ` y ) >. ) ) |
116 |
109 114 115
|
3eqtr4a |
|- ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) -> ( ( j e. ( A " { ( 1st ` y ) } ) |-> ( ( 1st ` y ) S j ) ) ` ( 2nd ` y ) ) = ( S ` y ) ) |
117 |
116
|
adantr |
|- ( ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) /\ ( 1st ` x ) = ( 1st ` y ) ) -> ( ( j e. ( A " { ( 1st ` y ) } ) |-> ( ( 1st ` y ) S j ) ) ` ( 2nd ` y ) ) = ( S ` y ) ) |
118 |
108 117
|
eqtrd |
|- ( ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) /\ ( 1st ` x ) = ( 1st ` y ) ) -> ( ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ` ( 2nd ` y ) ) = ( S ` y ) ) |
119 |
118
|
fveq2d |
|- ( ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) /\ ( 1st ` x ) = ( 1st ` y ) ) -> ( ( Cntz ` G ) ` ( ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ` ( 2nd ` y ) ) ) = ( ( Cntz ` G ) ` ( S ` y ) ) ) |
120 |
98 105 119
|
3sstr3d |
|- ( ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) /\ ( 1st ` x ) = ( 1st ` y ) ) -> ( S ` x ) C_ ( ( Cntz ` G ) ` ( S ` y ) ) ) |
121 |
1 2 3 4 5 6
|
dprd2dlem2 |
|- ( ( ph /\ x e. A ) -> ( S ` x ) C_ ( G DProd ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) ) |
122 |
45
|
oveq2d |
|- ( i = ( 1st ` x ) -> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) = ( G DProd ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) ) |
123 |
122 19 18
|
fvmpt3i |
|- ( ( 1st ` x ) e. I -> ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ` ( 1st ` x ) ) = ( G DProd ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) ) |
124 |
52 123
|
syl |
|- ( ( ph /\ x e. A ) -> ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ` ( 1st ` x ) ) = ( G DProd ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) ) |
125 |
121 124
|
sseqtrrd |
|- ( ( ph /\ x e. A ) -> ( S ` x ) C_ ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ` ( 1st ` x ) ) ) |
126 |
125
|
3ad2antr1 |
|- ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) -> ( S ` x ) C_ ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ` ( 1st ` x ) ) ) |
127 |
126
|
adantr |
|- ( ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) /\ ( 1st ` x ) =/= ( 1st ` y ) ) -> ( S ` x ) C_ ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ` ( 1st ` x ) ) ) |
128 |
5
|
ad2antrr |
|- ( ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) /\ ( 1st ` x ) =/= ( 1st ` y ) ) -> G dom DProd ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ) |
129 |
20
|
a1i |
|- ( ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) /\ ( 1st ` x ) =/= ( 1st ` y ) ) -> dom ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) = I ) |
130 |
52
|
3ad2antr1 |
|- ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) -> ( 1st ` x ) e. I ) |
131 |
130
|
adantr |
|- ( ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) /\ ( 1st ` x ) =/= ( 1st ` y ) ) -> ( 1st ` x ) e. I ) |
132 |
3
|
adantr |
|- ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) -> dom A C_ I ) |
133 |
|
1stdm |
|- ( ( Rel A /\ y e. A ) -> ( 1st ` y ) e. dom A ) |
134 |
72 73 133
|
syl2anc |
|- ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) -> ( 1st ` y ) e. dom A ) |
135 |
132 134
|
sseldd |
|- ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) -> ( 1st ` y ) e. I ) |
136 |
135
|
adantr |
|- ( ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) /\ ( 1st ` x ) =/= ( 1st ` y ) ) -> ( 1st ` y ) e. I ) |
137 |
|
simpr |
|- ( ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) /\ ( 1st ` x ) =/= ( 1st ` y ) ) -> ( 1st ` x ) =/= ( 1st ` y ) ) |
138 |
128 129 131 136 137 7
|
dprdcntz |
|- ( ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) /\ ( 1st ` x ) =/= ( 1st ` y ) ) -> ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ` ( 1st ` x ) ) C_ ( ( Cntz ` G ) ` ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ` ( 1st ` y ) ) ) ) |
139 |
|
sneq |
|- ( i = ( 1st ` y ) -> { i } = { ( 1st ` y ) } ) |
140 |
139
|
imaeq2d |
|- ( i = ( 1st ` y ) -> ( A " { i } ) = ( A " { ( 1st ` y ) } ) ) |
141 |
|
oveq1 |
|- ( i = ( 1st ` y ) -> ( i S j ) = ( ( 1st ` y ) S j ) ) |
142 |
140 141
|
mpteq12dv |
|- ( i = ( 1st ` y ) -> ( j e. ( A " { i } ) |-> ( i S j ) ) = ( j e. ( A " { ( 1st ` y ) } ) |-> ( ( 1st ` y ) S j ) ) ) |
143 |
142
|
oveq2d |
|- ( i = ( 1st ` y ) -> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) = ( G DProd ( j e. ( A " { ( 1st ` y ) } ) |-> ( ( 1st ` y ) S j ) ) ) ) |
144 |
143 19 18
|
fvmpt3i |
|- ( ( 1st ` y ) e. I -> ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ` ( 1st ` y ) ) = ( G DProd ( j e. ( A " { ( 1st ` y ) } ) |-> ( ( 1st ` y ) S j ) ) ) ) |
145 |
135 144
|
syl |
|- ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) -> ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ` ( 1st ` y ) ) = ( G DProd ( j e. ( A " { ( 1st ` y ) } ) |-> ( ( 1st ` y ) S j ) ) ) ) |
146 |
145
|
fveq2d |
|- ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) -> ( ( Cntz ` G ) ` ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ` ( 1st ` y ) ) ) = ( ( Cntz ` G ) ` ( G DProd ( j e. ( A " { ( 1st ` y ) } ) |-> ( ( 1st ` y ) S j ) ) ) ) ) |
147 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
148 |
147
|
dprdssv |
|- ( G DProd ( j e. ( A " { ( 1st ` y ) } ) |-> ( ( 1st ` y ) S j ) ) ) C_ ( Base ` G ) |
149 |
142
|
breq2d |
|- ( i = ( 1st ` y ) -> ( G dom DProd ( j e. ( A " { i } ) |-> ( i S j ) ) <-> G dom DProd ( j e. ( A " { ( 1st ` y ) } ) |-> ( ( 1st ` y ) S j ) ) ) ) |
150 |
47
|
adantr |
|- ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) -> A. i e. I G dom DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) |
151 |
149 150 135
|
rspcdva |
|- ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) -> G dom DProd ( j e. ( A " { ( 1st ` y ) } ) |-> ( ( 1st ` y ) S j ) ) ) |
152 |
112 111
|
dmmpti |
|- dom ( j e. ( A " { ( 1st ` y ) } ) |-> ( ( 1st ` y ) S j ) ) = ( A " { ( 1st ` y ) } ) |
153 |
152
|
a1i |
|- ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) -> dom ( j e. ( A " { ( 1st ` y ) } ) |-> ( ( 1st ` y ) S j ) ) = ( A " { ( 1st ` y ) } ) ) |
154 |
151 153 81
|
dprdub |
|- ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) -> ( ( j e. ( A " { ( 1st ` y ) } ) |-> ( ( 1st ` y ) S j ) ) ` ( 2nd ` y ) ) C_ ( G DProd ( j e. ( A " { ( 1st ` y ) } ) |-> ( ( 1st ` y ) S j ) ) ) ) |
155 |
116 154
|
eqsstrrd |
|- ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) -> ( S ` y ) C_ ( G DProd ( j e. ( A " { ( 1st ` y ) } ) |-> ( ( 1st ` y ) S j ) ) ) ) |
156 |
147 7
|
cntz2ss |
|- ( ( ( G DProd ( j e. ( A " { ( 1st ` y ) } ) |-> ( ( 1st ` y ) S j ) ) ) C_ ( Base ` G ) /\ ( S ` y ) C_ ( G DProd ( j e. ( A " { ( 1st ` y ) } ) |-> ( ( 1st ` y ) S j ) ) ) ) -> ( ( Cntz ` G ) ` ( G DProd ( j e. ( A " { ( 1st ` y ) } ) |-> ( ( 1st ` y ) S j ) ) ) ) C_ ( ( Cntz ` G ) ` ( S ` y ) ) ) |
157 |
148 155 156
|
sylancr |
|- ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) -> ( ( Cntz ` G ) ` ( G DProd ( j e. ( A " { ( 1st ` y ) } ) |-> ( ( 1st ` y ) S j ) ) ) ) C_ ( ( Cntz ` G ) ` ( S ` y ) ) ) |
158 |
146 157
|
eqsstrd |
|- ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) -> ( ( Cntz ` G ) ` ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ` ( 1st ` y ) ) ) C_ ( ( Cntz ` G ) ` ( S ` y ) ) ) |
159 |
158
|
adantr |
|- ( ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) /\ ( 1st ` x ) =/= ( 1st ` y ) ) -> ( ( Cntz ` G ) ` ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ` ( 1st ` y ) ) ) C_ ( ( Cntz ` G ) ` ( S ` y ) ) ) |
160 |
138 159
|
sstrd |
|- ( ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) /\ ( 1st ` x ) =/= ( 1st ` y ) ) -> ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ` ( 1st ` x ) ) C_ ( ( Cntz ` G ) ` ( S ` y ) ) ) |
161 |
127 160
|
sstrd |
|- ( ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) /\ ( 1st ` x ) =/= ( 1st ` y ) ) -> ( S ` x ) C_ ( ( Cntz ` G ) ` ( S ` y ) ) ) |
162 |
120 161
|
pm2.61dane |
|- ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) -> ( S ` x ) C_ ( ( Cntz ` G ) ` ( S ` y ) ) ) |
163 |
10
|
adantr |
|- ( ( ph /\ x e. A ) -> G e. Grp ) |
164 |
147
|
subgacs |
|- ( G e. Grp -> ( SubGrp ` G ) e. ( ACS ` ( Base ` G ) ) ) |
165 |
|
acsmre |
|- ( ( SubGrp ` G ) e. ( ACS ` ( Base ` G ) ) -> ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) ) |
166 |
163 164 165
|
3syl |
|- ( ( ph /\ x e. A ) -> ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) ) |
167 |
16
|
adantr |
|- ( ( ph /\ x e. A ) -> ( A |` I ) = A ) |
168 |
|
undif2 |
|- ( { ( 1st ` x ) } u. ( I \ { ( 1st ` x ) } ) ) = ( { ( 1st ` x ) } u. I ) |
169 |
52
|
snssd |
|- ( ( ph /\ x e. A ) -> { ( 1st ` x ) } C_ I ) |
170 |
|
ssequn1 |
|- ( { ( 1st ` x ) } C_ I <-> ( { ( 1st ` x ) } u. I ) = I ) |
171 |
169 170
|
sylib |
|- ( ( ph /\ x e. A ) -> ( { ( 1st ` x ) } u. I ) = I ) |
172 |
168 171
|
eqtr2id |
|- ( ( ph /\ x e. A ) -> I = ( { ( 1st ` x ) } u. ( I \ { ( 1st ` x ) } ) ) ) |
173 |
172
|
reseq2d |
|- ( ( ph /\ x e. A ) -> ( A |` I ) = ( A |` ( { ( 1st ` x ) } u. ( I \ { ( 1st ` x ) } ) ) ) ) |
174 |
167 173
|
eqtr3d |
|- ( ( ph /\ x e. A ) -> A = ( A |` ( { ( 1st ` x ) } u. ( I \ { ( 1st ` x ) } ) ) ) ) |
175 |
|
resundi |
|- ( A |` ( { ( 1st ` x ) } u. ( I \ { ( 1st ` x ) } ) ) ) = ( ( A |` { ( 1st ` x ) } ) u. ( A |` ( I \ { ( 1st ` x ) } ) ) ) |
176 |
174 175
|
eqtrdi |
|- ( ( ph /\ x e. A ) -> A = ( ( A |` { ( 1st ` x ) } ) u. ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) |
177 |
176
|
difeq1d |
|- ( ( ph /\ x e. A ) -> ( A \ { x } ) = ( ( ( A |` { ( 1st ` x ) } ) u. ( A |` ( I \ { ( 1st ` x ) } ) ) ) \ { x } ) ) |
178 |
|
difundir |
|- ( ( ( A |` { ( 1st ` x ) } ) u. ( A |` ( I \ { ( 1st ` x ) } ) ) ) \ { x } ) = ( ( ( A |` { ( 1st ` x ) } ) \ { x } ) u. ( ( A |` ( I \ { ( 1st ` x ) } ) ) \ { x } ) ) |
179 |
177 178
|
eqtrdi |
|- ( ( ph /\ x e. A ) -> ( A \ { x } ) = ( ( ( A |` { ( 1st ` x ) } ) \ { x } ) u. ( ( A |` ( I \ { ( 1st ` x ) } ) ) \ { x } ) ) ) |
180 |
|
neirr |
|- -. ( 1st ` x ) =/= ( 1st ` x ) |
181 |
61
|
eleq1d |
|- ( ( ph /\ x e. A ) -> ( x e. ( A |` ( I \ { ( 1st ` x ) } ) ) <-> <. ( 1st ` x ) , ( 2nd ` x ) >. e. ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) |
182 |
|
df-br |
|- ( ( 1st ` x ) ( A |` ( I \ { ( 1st ` x ) } ) ) ( 2nd ` x ) <-> <. ( 1st ` x ) , ( 2nd ` x ) >. e. ( A |` ( I \ { ( 1st ` x ) } ) ) ) |
183 |
92
|
brresi |
|- ( ( 1st ` x ) ( A |` ( I \ { ( 1st ` x ) } ) ) ( 2nd ` x ) <-> ( ( 1st ` x ) e. ( I \ { ( 1st ` x ) } ) /\ ( 1st ` x ) A ( 2nd ` x ) ) ) |
184 |
183
|
simplbi |
|- ( ( 1st ` x ) ( A |` ( I \ { ( 1st ` x ) } ) ) ( 2nd ` x ) -> ( 1st ` x ) e. ( I \ { ( 1st ` x ) } ) ) |
185 |
|
eldifsni |
|- ( ( 1st ` x ) e. ( I \ { ( 1st ` x ) } ) -> ( 1st ` x ) =/= ( 1st ` x ) ) |
186 |
184 185
|
syl |
|- ( ( 1st ` x ) ( A |` ( I \ { ( 1st ` x ) } ) ) ( 2nd ` x ) -> ( 1st ` x ) =/= ( 1st ` x ) ) |
187 |
182 186
|
sylbir |
|- ( <. ( 1st ` x ) , ( 2nd ` x ) >. e. ( A |` ( I \ { ( 1st ` x ) } ) ) -> ( 1st ` x ) =/= ( 1st ` x ) ) |
188 |
181 187
|
syl6bi |
|- ( ( ph /\ x e. A ) -> ( x e. ( A |` ( I \ { ( 1st ` x ) } ) ) -> ( 1st ` x ) =/= ( 1st ` x ) ) ) |
189 |
180 188
|
mtoi |
|- ( ( ph /\ x e. A ) -> -. x e. ( A |` ( I \ { ( 1st ` x ) } ) ) ) |
190 |
|
disjsn |
|- ( ( ( A |` ( I \ { ( 1st ` x ) } ) ) i^i { x } ) = (/) <-> -. x e. ( A |` ( I \ { ( 1st ` x ) } ) ) ) |
191 |
189 190
|
sylibr |
|- ( ( ph /\ x e. A ) -> ( ( A |` ( I \ { ( 1st ` x ) } ) ) i^i { x } ) = (/) ) |
192 |
|
disj3 |
|- ( ( ( A |` ( I \ { ( 1st ` x ) } ) ) i^i { x } ) = (/) <-> ( A |` ( I \ { ( 1st ` x ) } ) ) = ( ( A |` ( I \ { ( 1st ` x ) } ) ) \ { x } ) ) |
193 |
191 192
|
sylib |
|- ( ( ph /\ x e. A ) -> ( A |` ( I \ { ( 1st ` x ) } ) ) = ( ( A |` ( I \ { ( 1st ` x ) } ) ) \ { x } ) ) |
194 |
193
|
eqcomd |
|- ( ( ph /\ x e. A ) -> ( ( A |` ( I \ { ( 1st ` x ) } ) ) \ { x } ) = ( A |` ( I \ { ( 1st ` x ) } ) ) ) |
195 |
194
|
uneq2d |
|- ( ( ph /\ x e. A ) -> ( ( ( A |` { ( 1st ` x ) } ) \ { x } ) u. ( ( A |` ( I \ { ( 1st ` x ) } ) ) \ { x } ) ) = ( ( ( A |` { ( 1st ` x ) } ) \ { x } ) u. ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) |
196 |
179 195
|
eqtrd |
|- ( ( ph /\ x e. A ) -> ( A \ { x } ) = ( ( ( A |` { ( 1st ` x ) } ) \ { x } ) u. ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) |
197 |
196
|
imaeq2d |
|- ( ( ph /\ x e. A ) -> ( S " ( A \ { x } ) ) = ( S " ( ( ( A |` { ( 1st ` x ) } ) \ { x } ) u. ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) ) |
198 |
|
imaundi |
|- ( S " ( ( ( A |` { ( 1st ` x ) } ) \ { x } ) u. ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) = ( ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) u. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) |
199 |
197 198
|
eqtrdi |
|- ( ( ph /\ x e. A ) -> ( S " ( A \ { x } ) ) = ( ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) u. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) ) |
200 |
199
|
unieqd |
|- ( ( ph /\ x e. A ) -> U. ( S " ( A \ { x } ) ) = U. ( ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) u. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) ) |
201 |
|
uniun |
|- U. ( ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) u. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) = ( U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) u. U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) |
202 |
200 201
|
eqtrdi |
|- ( ( ph /\ x e. A ) -> U. ( S " ( A \ { x } ) ) = ( U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) u. U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) ) |
203 |
|
imassrn |
|- ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) C_ ran S |
204 |
2
|
frnd |
|- ( ph -> ran S C_ ( SubGrp ` G ) ) |
205 |
204
|
adantr |
|- ( ( ph /\ x e. A ) -> ran S C_ ( SubGrp ` G ) ) |
206 |
|
mresspw |
|- ( ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) -> ( SubGrp ` G ) C_ ~P ( Base ` G ) ) |
207 |
166 206
|
syl |
|- ( ( ph /\ x e. A ) -> ( SubGrp ` G ) C_ ~P ( Base ` G ) ) |
208 |
205 207
|
sstrd |
|- ( ( ph /\ x e. A ) -> ran S C_ ~P ( Base ` G ) ) |
209 |
203 208
|
sstrid |
|- ( ( ph /\ x e. A ) -> ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) C_ ~P ( Base ` G ) ) |
210 |
|
sspwuni |
|- ( ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) C_ ~P ( Base ` G ) <-> U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) C_ ( Base ` G ) ) |
211 |
209 210
|
sylib |
|- ( ( ph /\ x e. A ) -> U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) C_ ( Base ` G ) ) |
212 |
166 6 211
|
mrcssidd |
|- ( ( ph /\ x e. A ) -> U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) C_ ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) ) |
213 |
|
imassrn |
|- ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) C_ ran S |
214 |
213 208
|
sstrid |
|- ( ( ph /\ x e. A ) -> ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) C_ ~P ( Base ` G ) ) |
215 |
|
sspwuni |
|- ( ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) C_ ~P ( Base ` G ) <-> U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) C_ ( Base ` G ) ) |
216 |
214 215
|
sylib |
|- ( ( ph /\ x e. A ) -> U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) C_ ( Base ` G ) ) |
217 |
166 6 216
|
mrcssidd |
|- ( ( ph /\ x e. A ) -> U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) C_ ( K ` U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) ) |
218 |
|
unss12 |
|- ( ( U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) C_ ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) /\ U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) C_ ( K ` U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) ) -> ( U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) u. U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) C_ ( ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) u. ( K ` U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) ) ) |
219 |
212 217 218
|
syl2anc |
|- ( ( ph /\ x e. A ) -> ( U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) u. U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) C_ ( ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) u. ( K ` U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) ) ) |
220 |
202 219
|
eqsstrd |
|- ( ( ph /\ x e. A ) -> U. ( S " ( A \ { x } ) ) C_ ( ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) u. ( K ` U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) ) ) |
221 |
6
|
mrccl |
|- ( ( ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) /\ U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) C_ ( Base ` G ) ) -> ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) e. ( SubGrp ` G ) ) |
222 |
166 211 221
|
syl2anc |
|- ( ( ph /\ x e. A ) -> ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) e. ( SubGrp ` G ) ) |
223 |
6
|
mrccl |
|- ( ( ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) /\ U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) C_ ( Base ` G ) ) -> ( K ` U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) e. ( SubGrp ` G ) ) |
224 |
166 216 223
|
syl2anc |
|- ( ( ph /\ x e. A ) -> ( K ` U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) e. ( SubGrp ` G ) ) |
225 |
|
eqid |
|- ( LSSum ` G ) = ( LSSum ` G ) |
226 |
225
|
lsmunss |
|- ( ( ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) e. ( SubGrp ` G ) /\ ( K ` U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) e. ( SubGrp ` G ) ) -> ( ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) u. ( K ` U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) ) C_ ( ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) ( LSSum ` G ) ( K ` U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) ) ) |
227 |
222 224 226
|
syl2anc |
|- ( ( ph /\ x e. A ) -> ( ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) u. ( K ` U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) ) C_ ( ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) ( LSSum ` G ) ( K ` U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) ) ) |
228 |
220 227
|
sstrd |
|- ( ( ph /\ x e. A ) -> U. ( S " ( A \ { x } ) ) C_ ( ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) ( LSSum ` G ) ( K ` U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) ) ) |
229 |
|
difss |
|- ( ( A |` { ( 1st ` x ) } ) \ { x } ) C_ ( A |` { ( 1st ` x ) } ) |
230 |
|
ressn |
|- ( A |` { ( 1st ` x ) } ) = ( { ( 1st ` x ) } X. ( A " { ( 1st ` x ) } ) ) |
231 |
229 230
|
sseqtri |
|- ( ( A |` { ( 1st ` x ) } ) \ { x } ) C_ ( { ( 1st ` x ) } X. ( A " { ( 1st ` x ) } ) ) |
232 |
|
imass2 |
|- ( ( ( A |` { ( 1st ` x ) } ) \ { x } ) C_ ( { ( 1st ` x ) } X. ( A " { ( 1st ` x ) } ) ) -> ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) C_ ( S " ( { ( 1st ` x ) } X. ( A " { ( 1st ` x ) } ) ) ) ) |
233 |
231 232
|
ax-mp |
|- ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) C_ ( S " ( { ( 1st ` x ) } X. ( A " { ( 1st ` x ) } ) ) ) |
234 |
|
ovex |
|- ( ( 1st ` x ) S i ) e. _V |
235 |
|
oveq2 |
|- ( j = i -> ( ( 1st ` x ) S j ) = ( ( 1st ` x ) S i ) ) |
236 |
57 235
|
elrnmpt1s |
|- ( ( i e. ( A " { ( 1st ` x ) } ) /\ ( ( 1st ` x ) S i ) e. _V ) -> ( ( 1st ` x ) S i ) e. ran ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) |
237 |
234 236
|
mpan2 |
|- ( i e. ( A " { ( 1st ` x ) } ) -> ( ( 1st ` x ) S i ) e. ran ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) |
238 |
237
|
rgen |
|- A. i e. ( A " { ( 1st ` x ) } ) ( ( 1st ` x ) S i ) e. ran ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) |
239 |
238
|
a1i |
|- ( ( ph /\ x e. A ) -> A. i e. ( A " { ( 1st ` x ) } ) ( ( 1st ` x ) S i ) e. ran ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) |
240 |
|
oveq1 |
|- ( y = ( 1st ` x ) -> ( y S i ) = ( ( 1st ` x ) S i ) ) |
241 |
240
|
eleq1d |
|- ( y = ( 1st ` x ) -> ( ( y S i ) e. ran ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) <-> ( ( 1st ` x ) S i ) e. ran ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) ) |
242 |
241
|
ralbidv |
|- ( y = ( 1st ` x ) -> ( A. i e. ( A " { ( 1st ` x ) } ) ( y S i ) e. ran ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) <-> A. i e. ( A " { ( 1st ` x ) } ) ( ( 1st ` x ) S i ) e. ran ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) ) |
243 |
91 242
|
ralsn |
|- ( A. y e. { ( 1st ` x ) } A. i e. ( A " { ( 1st ` x ) } ) ( y S i ) e. ran ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) <-> A. i e. ( A " { ( 1st ` x ) } ) ( ( 1st ` x ) S i ) e. ran ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) |
244 |
239 243
|
sylibr |
|- ( ( ph /\ x e. A ) -> A. y e. { ( 1st ` x ) } A. i e. ( A " { ( 1st ` x ) } ) ( y S i ) e. ran ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) |
245 |
2
|
adantr |
|- ( ( ph /\ x e. A ) -> S : A --> ( SubGrp ` G ) ) |
246 |
245
|
ffund |
|- ( ( ph /\ x e. A ) -> Fun S ) |
247 |
|
resss |
|- ( A |` { ( 1st ` x ) } ) C_ A |
248 |
230 247
|
eqsstrri |
|- ( { ( 1st ` x ) } X. ( A " { ( 1st ` x ) } ) ) C_ A |
249 |
245
|
fdmd |
|- ( ( ph /\ x e. A ) -> dom S = A ) |
250 |
248 249
|
sseqtrrid |
|- ( ( ph /\ x e. A ) -> ( { ( 1st ` x ) } X. ( A " { ( 1st ` x ) } ) ) C_ dom S ) |
251 |
|
funimassov |
|- ( ( Fun S /\ ( { ( 1st ` x ) } X. ( A " { ( 1st ` x ) } ) ) C_ dom S ) -> ( ( S " ( { ( 1st ` x ) } X. ( A " { ( 1st ` x ) } ) ) ) C_ ran ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) <-> A. y e. { ( 1st ` x ) } A. i e. ( A " { ( 1st ` x ) } ) ( y S i ) e. ran ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) ) |
252 |
246 250 251
|
syl2anc |
|- ( ( ph /\ x e. A ) -> ( ( S " ( { ( 1st ` x ) } X. ( A " { ( 1st ` x ) } ) ) ) C_ ran ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) <-> A. y e. { ( 1st ` x ) } A. i e. ( A " { ( 1st ` x ) } ) ( y S i ) e. ran ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) ) |
253 |
244 252
|
mpbird |
|- ( ( ph /\ x e. A ) -> ( S " ( { ( 1st ` x ) } X. ( A " { ( 1st ` x ) } ) ) ) C_ ran ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) |
254 |
233 253
|
sstrid |
|- ( ( ph /\ x e. A ) -> ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) C_ ran ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) |
255 |
254
|
unissd |
|- ( ( ph /\ x e. A ) -> U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) C_ U. ran ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) |
256 |
|
df-ov |
|- ( ( 1st ` x ) S j ) = ( S ` <. ( 1st ` x ) , j >. ) |
257 |
2
|
ad2antrr |
|- ( ( ( ph /\ x e. A ) /\ j e. ( A " { ( 1st ` x ) } ) ) -> S : A --> ( SubGrp ` G ) ) |
258 |
|
elrelimasn |
|- ( Rel A -> ( j e. ( A " { ( 1st ` x ) } ) <-> ( 1st ` x ) A j ) ) |
259 |
66 258
|
syl |
|- ( ( ph /\ x e. A ) -> ( j e. ( A " { ( 1st ` x ) } ) <-> ( 1st ` x ) A j ) ) |
260 |
259
|
biimpa |
|- ( ( ( ph /\ x e. A ) /\ j e. ( A " { ( 1st ` x ) } ) ) -> ( 1st ` x ) A j ) |
261 |
|
df-br |
|- ( ( 1st ` x ) A j <-> <. ( 1st ` x ) , j >. e. A ) |
262 |
260 261
|
sylib |
|- ( ( ( ph /\ x e. A ) /\ j e. ( A " { ( 1st ` x ) } ) ) -> <. ( 1st ` x ) , j >. e. A ) |
263 |
257 262
|
ffvelrnd |
|- ( ( ( ph /\ x e. A ) /\ j e. ( A " { ( 1st ` x ) } ) ) -> ( S ` <. ( 1st ` x ) , j >. ) e. ( SubGrp ` G ) ) |
264 |
256 263
|
eqeltrid |
|- ( ( ( ph /\ x e. A ) /\ j e. ( A " { ( 1st ` x ) } ) ) -> ( ( 1st ` x ) S j ) e. ( SubGrp ` G ) ) |
265 |
264
|
fmpttd |
|- ( ( ph /\ x e. A ) -> ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) : ( A " { ( 1st ` x ) } ) --> ( SubGrp ` G ) ) |
266 |
265
|
frnd |
|- ( ( ph /\ x e. A ) -> ran ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) C_ ( SubGrp ` G ) ) |
267 |
266 207
|
sstrd |
|- ( ( ph /\ x e. A ) -> ran ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) C_ ~P ( Base ` G ) ) |
268 |
|
sspwuni |
|- ( ran ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) C_ ~P ( Base ` G ) <-> U. ran ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) C_ ( Base ` G ) ) |
269 |
267 268
|
sylib |
|- ( ( ph /\ x e. A ) -> U. ran ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) C_ ( Base ` G ) ) |
270 |
166 6 255 269
|
mrcssd |
|- ( ( ph /\ x e. A ) -> ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) C_ ( K ` U. ran ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) ) |
271 |
6
|
dprdspan |
|- ( G dom DProd ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) -> ( G DProd ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) = ( K ` U. ran ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) ) |
272 |
53 271
|
syl |
|- ( ( ph /\ x e. A ) -> ( G DProd ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) = ( K ` U. ran ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) ) |
273 |
270 272
|
sseqtrrd |
|- ( ( ph /\ x e. A ) -> ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) C_ ( G DProd ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) ) |
274 |
18 19
|
fnmpti |
|- ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) Fn I |
275 |
|
fnressn |
|- ( ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) Fn I /\ ( 1st ` x ) e. I ) -> ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) |` { ( 1st ` x ) } ) = { <. ( 1st ` x ) , ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ` ( 1st ` x ) ) >. } ) |
276 |
274 52 275
|
sylancr |
|- ( ( ph /\ x e. A ) -> ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) |` { ( 1st ` x ) } ) = { <. ( 1st ` x ) , ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ` ( 1st ` x ) ) >. } ) |
277 |
124
|
opeq2d |
|- ( ( ph /\ x e. A ) -> <. ( 1st ` x ) , ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ` ( 1st ` x ) ) >. = <. ( 1st ` x ) , ( G DProd ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) >. ) |
278 |
277
|
sneqd |
|- ( ( ph /\ x e. A ) -> { <. ( 1st ` x ) , ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ` ( 1st ` x ) ) >. } = { <. ( 1st ` x ) , ( G DProd ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) >. } ) |
279 |
276 278
|
eqtrd |
|- ( ( ph /\ x e. A ) -> ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) |` { ( 1st ` x ) } ) = { <. ( 1st ` x ) , ( G DProd ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) >. } ) |
280 |
279
|
oveq2d |
|- ( ( ph /\ x e. A ) -> ( G DProd ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) |` { ( 1st ` x ) } ) ) = ( G DProd { <. ( 1st ` x ) , ( G DProd ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) >. } ) ) |
281 |
|
dprdsubg |
|- ( G dom DProd ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) -> ( G DProd ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) e. ( SubGrp ` G ) ) |
282 |
53 281
|
syl |
|- ( ( ph /\ x e. A ) -> ( G DProd ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) e. ( SubGrp ` G ) ) |
283 |
|
dprdsn |
|- ( ( ( 1st ` x ) e. I /\ ( G DProd ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) e. ( SubGrp ` G ) ) -> ( G dom DProd { <. ( 1st ` x ) , ( G DProd ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) >. } /\ ( G DProd { <. ( 1st ` x ) , ( G DProd ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) >. } ) = ( G DProd ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) ) ) |
284 |
52 282 283
|
syl2anc |
|- ( ( ph /\ x e. A ) -> ( G dom DProd { <. ( 1st ` x ) , ( G DProd ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) >. } /\ ( G DProd { <. ( 1st ` x ) , ( G DProd ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) >. } ) = ( G DProd ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) ) ) |
285 |
284
|
simprd |
|- ( ( ph /\ x e. A ) -> ( G DProd { <. ( 1st ` x ) , ( G DProd ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) >. } ) = ( G DProd ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) ) |
286 |
280 285
|
eqtrd |
|- ( ( ph /\ x e. A ) -> ( G DProd ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) |` { ( 1st ` x ) } ) ) = ( G DProd ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) ) |
287 |
5
|
adantr |
|- ( ( ph /\ x e. A ) -> G dom DProd ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ) |
288 |
20
|
a1i |
|- ( ( ph /\ x e. A ) -> dom ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) = I ) |
289 |
|
difss |
|- ( I \ { ( 1st ` x ) } ) C_ I |
290 |
289
|
a1i |
|- ( ( ph /\ x e. A ) -> ( I \ { ( 1st ` x ) } ) C_ I ) |
291 |
|
disjdif |
|- ( { ( 1st ` x ) } i^i ( I \ { ( 1st ` x ) } ) ) = (/) |
292 |
291
|
a1i |
|- ( ( ph /\ x e. A ) -> ( { ( 1st ` x ) } i^i ( I \ { ( 1st ` x ) } ) ) = (/) ) |
293 |
287 288 169 290 292 7
|
dprdcntz2 |
|- ( ( ph /\ x e. A ) -> ( G DProd ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) |` { ( 1st ` x ) } ) ) C_ ( ( Cntz ` G ) ` ( G DProd ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) |` ( I \ { ( 1st ` x ) } ) ) ) ) ) |
294 |
286 293
|
eqsstrrd |
|- ( ( ph /\ x e. A ) -> ( G DProd ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) C_ ( ( Cntz ` G ) ` ( G DProd ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) |` ( I \ { ( 1st ` x ) } ) ) ) ) ) |
295 |
4
|
adantlr |
|- ( ( ( ph /\ x e. A ) /\ i e. I ) -> G dom DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) |
296 |
66 245 49 295 287 6 290
|
dprd2dlem1 |
|- ( ( ph /\ x e. A ) -> ( K ` U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) = ( G DProd ( i e. ( I \ { ( 1st ` x ) } ) |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ) ) |
297 |
|
resmpt |
|- ( ( I \ { ( 1st ` x ) } ) C_ I -> ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) |` ( I \ { ( 1st ` x ) } ) ) = ( i e. ( I \ { ( 1st ` x ) } ) |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ) |
298 |
289 297
|
ax-mp |
|- ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) |` ( I \ { ( 1st ` x ) } ) ) = ( i e. ( I \ { ( 1st ` x ) } ) |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) |
299 |
298
|
oveq2i |
|- ( G DProd ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) |` ( I \ { ( 1st ` x ) } ) ) ) = ( G DProd ( i e. ( I \ { ( 1st ` x ) } ) |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ) |
300 |
296 299
|
eqtr4di |
|- ( ( ph /\ x e. A ) -> ( K ` U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) = ( G DProd ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) |` ( I \ { ( 1st ` x ) } ) ) ) ) |
301 |
300
|
fveq2d |
|- ( ( ph /\ x e. A ) -> ( ( Cntz ` G ) ` ( K ` U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) ) = ( ( Cntz ` G ) ` ( G DProd ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) |` ( I \ { ( 1st ` x ) } ) ) ) ) ) |
302 |
294 301
|
sseqtrrd |
|- ( ( ph /\ x e. A ) -> ( G DProd ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) C_ ( ( Cntz ` G ) ` ( K ` U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) ) ) |
303 |
273 302
|
sstrd |
|- ( ( ph /\ x e. A ) -> ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) C_ ( ( Cntz ` G ) ` ( K ` U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) ) ) |
304 |
225 7
|
lsmsubg |
|- ( ( ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) e. ( SubGrp ` G ) /\ ( K ` U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) e. ( SubGrp ` G ) /\ ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) C_ ( ( Cntz ` G ) ` ( K ` U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) ) ) -> ( ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) ( LSSum ` G ) ( K ` U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) ) e. ( SubGrp ` G ) ) |
305 |
222 224 303 304
|
syl3anc |
|- ( ( ph /\ x e. A ) -> ( ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) ( LSSum ` G ) ( K ` U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) ) e. ( SubGrp ` G ) ) |
306 |
6
|
mrcsscl |
|- ( ( ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) /\ U. ( S " ( A \ { x } ) ) C_ ( ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) ( LSSum ` G ) ( K ` U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) ) /\ ( ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) ( LSSum ` G ) ( K ` U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) ) e. ( SubGrp ` G ) ) -> ( K ` U. ( S " ( A \ { x } ) ) ) C_ ( ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) ( LSSum ` G ) ( K ` U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) ) ) |
307 |
166 228 305 306
|
syl3anc |
|- ( ( ph /\ x e. A ) -> ( K ` U. ( S " ( A \ { x } ) ) ) C_ ( ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) ( LSSum ` G ) ( K ` U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) ) ) |
308 |
|
sslin |
|- ( ( K ` U. ( S " ( A \ { x } ) ) ) C_ ( ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) ( LSSum ` G ) ( K ` U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) ) -> ( ( S ` x ) i^i ( K ` U. ( S " ( A \ { x } ) ) ) ) C_ ( ( S ` x ) i^i ( ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) ( LSSum ` G ) ( K ` U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) ) ) ) |
309 |
307 308
|
syl |
|- ( ( ph /\ x e. A ) -> ( ( S ` x ) i^i ( K ` U. ( S " ( A \ { x } ) ) ) ) C_ ( ( S ` x ) i^i ( ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) ( LSSum ` G ) ( K ` U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) ) ) ) |
310 |
2
|
ffvelrnda |
|- ( ( ph /\ x e. A ) -> ( S ` x ) e. ( SubGrp ` G ) ) |
311 |
225
|
lsmlub |
|- ( ( ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) e. ( SubGrp ` G ) /\ ( S ` x ) e. ( SubGrp ` G ) /\ ( G DProd ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) e. ( SubGrp ` G ) ) -> ( ( ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) C_ ( G DProd ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) /\ ( S ` x ) C_ ( G DProd ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) ) <-> ( ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) ( LSSum ` G ) ( S ` x ) ) C_ ( G DProd ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) ) ) |
312 |
222 310 282 311
|
syl3anc |
|- ( ( ph /\ x e. A ) -> ( ( ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) C_ ( G DProd ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) /\ ( S ` x ) C_ ( G DProd ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) ) <-> ( ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) ( LSSum ` G ) ( S ` x ) ) C_ ( G DProd ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) ) ) |
313 |
273 121 312
|
mpbi2and |
|- ( ( ph /\ x e. A ) -> ( ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) ( LSSum ` G ) ( S ` x ) ) C_ ( G DProd ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) ) |
314 |
313 124
|
sseqtrrd |
|- ( ( ph /\ x e. A ) -> ( ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) ( LSSum ` G ) ( S ` x ) ) C_ ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ` ( 1st ` x ) ) ) |
315 |
287 288 290
|
dprdres |
|- ( ( ph /\ x e. A ) -> ( G dom DProd ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) |` ( I \ { ( 1st ` x ) } ) ) /\ ( G DProd ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) |` ( I \ { ( 1st ` x ) } ) ) ) C_ ( G DProd ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ) ) ) |
316 |
315
|
simpld |
|- ( ( ph /\ x e. A ) -> G dom DProd ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) |` ( I \ { ( 1st ` x ) } ) ) ) |
317 |
6
|
dprdspan |
|- ( G dom DProd ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) |` ( I \ { ( 1st ` x ) } ) ) -> ( G DProd ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) |` ( I \ { ( 1st ` x ) } ) ) ) = ( K ` U. ran ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) |` ( I \ { ( 1st ` x ) } ) ) ) ) |
318 |
316 317
|
syl |
|- ( ( ph /\ x e. A ) -> ( G DProd ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) |` ( I \ { ( 1st ` x ) } ) ) ) = ( K ` U. ran ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) |` ( I \ { ( 1st ` x ) } ) ) ) ) |
319 |
|
df-ima |
|- ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) " ( I \ { ( 1st ` x ) } ) ) = ran ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) |` ( I \ { ( 1st ` x ) } ) ) |
320 |
319
|
unieqi |
|- U. ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) " ( I \ { ( 1st ` x ) } ) ) = U. ran ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) |` ( I \ { ( 1st ` x ) } ) ) |
321 |
320
|
fveq2i |
|- ( K ` U. ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) " ( I \ { ( 1st ` x ) } ) ) ) = ( K ` U. ran ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) |` ( I \ { ( 1st ` x ) } ) ) ) |
322 |
318 321
|
eqtr4di |
|- ( ( ph /\ x e. A ) -> ( G DProd ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) |` ( I \ { ( 1st ` x ) } ) ) ) = ( K ` U. ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) " ( I \ { ( 1st ` x ) } ) ) ) ) |
323 |
300 322
|
eqtrd |
|- ( ( ph /\ x e. A ) -> ( K ` U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) = ( K ` U. ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) " ( I \ { ( 1st ` x ) } ) ) ) ) |
324 |
|
eqimss |
|- ( ( K ` U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) = ( K ` U. ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) " ( I \ { ( 1st ` x ) } ) ) ) -> ( K ` U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) C_ ( K ` U. ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) " ( I \ { ( 1st ` x ) } ) ) ) ) |
325 |
323 324
|
syl |
|- ( ( ph /\ x e. A ) -> ( K ` U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) C_ ( K ` U. ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) " ( I \ { ( 1st ` x ) } ) ) ) ) |
326 |
|
ss2in |
|- ( ( ( ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) ( LSSum ` G ) ( S ` x ) ) C_ ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ` ( 1st ` x ) ) /\ ( K ` U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) C_ ( K ` U. ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) " ( I \ { ( 1st ` x ) } ) ) ) ) -> ( ( ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) ( LSSum ` G ) ( S ` x ) ) i^i ( K ` U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) ) C_ ( ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ` ( 1st ` x ) ) i^i ( K ` U. ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) " ( I \ { ( 1st ` x ) } ) ) ) ) ) |
327 |
314 325 326
|
syl2anc |
|- ( ( ph /\ x e. A ) -> ( ( ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) ( LSSum ` G ) ( S ` x ) ) i^i ( K ` U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) ) C_ ( ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ` ( 1st ` x ) ) i^i ( K ` U. ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) " ( I \ { ( 1st ` x ) } ) ) ) ) ) |
328 |
287 288 52 8 6
|
dprddisj |
|- ( ( ph /\ x e. A ) -> ( ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ` ( 1st ` x ) ) i^i ( K ` U. ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) " ( I \ { ( 1st ` x ) } ) ) ) ) = { ( 0g ` G ) } ) |
329 |
327 328
|
sseqtrd |
|- ( ( ph /\ x e. A ) -> ( ( ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) ( LSSum ` G ) ( S ` x ) ) i^i ( K ` U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) ) C_ { ( 0g ` G ) } ) |
330 |
225
|
lsmub2 |
|- ( ( ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) e. ( SubGrp ` G ) /\ ( S ` x ) e. ( SubGrp ` G ) ) -> ( S ` x ) C_ ( ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) ( LSSum ` G ) ( S ` x ) ) ) |
331 |
222 310 330
|
syl2anc |
|- ( ( ph /\ x e. A ) -> ( S ` x ) C_ ( ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) ( LSSum ` G ) ( S ` x ) ) ) |
332 |
8
|
subg0cl |
|- ( ( S ` x ) e. ( SubGrp ` G ) -> ( 0g ` G ) e. ( S ` x ) ) |
333 |
310 332
|
syl |
|- ( ( ph /\ x e. A ) -> ( 0g ` G ) e. ( S ` x ) ) |
334 |
331 333
|
sseldd |
|- ( ( ph /\ x e. A ) -> ( 0g ` G ) e. ( ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) ( LSSum ` G ) ( S ` x ) ) ) |
335 |
8
|
subg0cl |
|- ( ( K ` U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) e. ( SubGrp ` G ) -> ( 0g ` G ) e. ( K ` U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) ) |
336 |
224 335
|
syl |
|- ( ( ph /\ x e. A ) -> ( 0g ` G ) e. ( K ` U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) ) |
337 |
334 336
|
elind |
|- ( ( ph /\ x e. A ) -> ( 0g ` G ) e. ( ( ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) ( LSSum ` G ) ( S ` x ) ) i^i ( K ` U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) ) ) |
338 |
337
|
snssd |
|- ( ( ph /\ x e. A ) -> { ( 0g ` G ) } C_ ( ( ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) ( LSSum ` G ) ( S ` x ) ) i^i ( K ` U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) ) ) |
339 |
329 338
|
eqssd |
|- ( ( ph /\ x e. A ) -> ( ( ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) ( LSSum ` G ) ( S ` x ) ) i^i ( K ` U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) ) = { ( 0g ` G ) } ) |
340 |
|
incom |
|- ( ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) i^i ( S ` x ) ) = ( ( S ` x ) i^i ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) ) |
341 |
69 101
|
syl |
|- ( ( ph /\ x e. A ) -> ( ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ` ( 2nd ` x ) ) = ( ( 1st ` x ) S ( 2nd ` x ) ) ) |
342 |
61
|
fveq2d |
|- ( ( ph /\ x e. A ) -> ( S ` x ) = ( S ` <. ( 1st ` x ) , ( 2nd ` x ) >. ) ) |
343 |
99 341 342
|
3eqtr4a |
|- ( ( ph /\ x e. A ) -> ( ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ` ( 2nd ` x ) ) = ( S ` x ) ) |
344 |
|
eqimss2 |
|- ( ( ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ` ( 2nd ` x ) ) = ( S ` x ) -> ( S ` x ) C_ ( ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ` ( 2nd ` x ) ) ) |
345 |
343 344
|
syl |
|- ( ( ph /\ x e. A ) -> ( S ` x ) C_ ( ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ` ( 2nd ` x ) ) ) |
346 |
|
eldifsn |
|- ( y e. ( ( A |` { ( 1st ` x ) } ) \ { x } ) <-> ( y e. ( A |` { ( 1st ` x ) } ) /\ y =/= x ) ) |
347 |
1
|
ad2antrr |
|- ( ( ( ph /\ x e. A ) /\ ( y e. ( A |` { ( 1st ` x ) } ) /\ y =/= x ) ) -> Rel A ) |
348 |
|
simprl |
|- ( ( ( ph /\ x e. A ) /\ ( y e. ( A |` { ( 1st ` x ) } ) /\ y =/= x ) ) -> y e. ( A |` { ( 1st ` x ) } ) ) |
349 |
247 348
|
sselid |
|- ( ( ( ph /\ x e. A ) /\ ( y e. ( A |` { ( 1st ` x ) } ) /\ y =/= x ) ) -> y e. A ) |
350 |
347 349 74
|
syl2anc |
|- ( ( ( ph /\ x e. A ) /\ ( y e. ( A |` { ( 1st ` x ) } ) /\ y =/= x ) ) -> y = <. ( 1st ` y ) , ( 2nd ` y ) >. ) |
351 |
350
|
fveq2d |
|- ( ( ( ph /\ x e. A ) /\ ( y e. ( A |` { ( 1st ` x ) } ) /\ y =/= x ) ) -> ( S ` y ) = ( S ` <. ( 1st ` y ) , ( 2nd ` y ) >. ) ) |
352 |
351 109
|
eqtr4di |
|- ( ( ( ph /\ x e. A ) /\ ( y e. ( A |` { ( 1st ` x ) } ) /\ y =/= x ) ) -> ( S ` y ) = ( ( 1st ` y ) S ( 2nd ` y ) ) ) |
353 |
350 348
|
eqeltrrd |
|- ( ( ( ph /\ x e. A ) /\ ( y e. ( A |` { ( 1st ` x ) } ) /\ y =/= x ) ) -> <. ( 1st ` y ) , ( 2nd ` y ) >. e. ( A |` { ( 1st ` x ) } ) ) |
354 |
|
fvex |
|- ( 2nd ` y ) e. _V |
355 |
354
|
opelresi |
|- ( <. ( 1st ` y ) , ( 2nd ` y ) >. e. ( A |` { ( 1st ` x ) } ) <-> ( ( 1st ` y ) e. { ( 1st ` x ) } /\ <. ( 1st ` y ) , ( 2nd ` y ) >. e. A ) ) |
356 |
355
|
simplbi |
|- ( <. ( 1st ` y ) , ( 2nd ` y ) >. e. ( A |` { ( 1st ` x ) } ) -> ( 1st ` y ) e. { ( 1st ` x ) } ) |
357 |
353 356
|
syl |
|- ( ( ( ph /\ x e. A ) /\ ( y e. ( A |` { ( 1st ` x ) } ) /\ y =/= x ) ) -> ( 1st ` y ) e. { ( 1st ` x ) } ) |
358 |
|
elsni |
|- ( ( 1st ` y ) e. { ( 1st ` x ) } -> ( 1st ` y ) = ( 1st ` x ) ) |
359 |
357 358
|
syl |
|- ( ( ( ph /\ x e. A ) /\ ( y e. ( A |` { ( 1st ` x ) } ) /\ y =/= x ) ) -> ( 1st ` y ) = ( 1st ` x ) ) |
360 |
359
|
oveq1d |
|- ( ( ( ph /\ x e. A ) /\ ( y e. ( A |` { ( 1st ` x ) } ) /\ y =/= x ) ) -> ( ( 1st ` y ) S ( 2nd ` y ) ) = ( ( 1st ` x ) S ( 2nd ` y ) ) ) |
361 |
352 360
|
eqtrd |
|- ( ( ( ph /\ x e. A ) /\ ( y e. ( A |` { ( 1st ` x ) } ) /\ y =/= x ) ) -> ( S ` y ) = ( ( 1st ` x ) S ( 2nd ` y ) ) ) |
362 |
348 230
|
eleqtrdi |
|- ( ( ( ph /\ x e. A ) /\ ( y e. ( A |` { ( 1st ` x ) } ) /\ y =/= x ) ) -> y e. ( { ( 1st ` x ) } X. ( A " { ( 1st ` x ) } ) ) ) |
363 |
|
xp2nd |
|- ( y e. ( { ( 1st ` x ) } X. ( A " { ( 1st ` x ) } ) ) -> ( 2nd ` y ) e. ( A " { ( 1st ` x ) } ) ) |
364 |
362 363
|
syl |
|- ( ( ( ph /\ x e. A ) /\ ( y e. ( A |` { ( 1st ` x ) } ) /\ y =/= x ) ) -> ( 2nd ` y ) e. ( A " { ( 1st ` x ) } ) ) |
365 |
|
simprr |
|- ( ( ( ph /\ x e. A ) /\ ( y e. ( A |` { ( 1st ` x ) } ) /\ y =/= x ) ) -> y =/= x ) |
366 |
61
|
adantr |
|- ( ( ( ph /\ x e. A ) /\ ( y e. ( A |` { ( 1st ` x ) } ) /\ y =/= x ) ) -> x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) |
367 |
350 366
|
eqeq12d |
|- ( ( ( ph /\ x e. A ) /\ ( y e. ( A |` { ( 1st ` x ) } ) /\ y =/= x ) ) -> ( y = x <-> <. ( 1st ` y ) , ( 2nd ` y ) >. = <. ( 1st ` x ) , ( 2nd ` x ) >. ) ) |
368 |
|
fvex |
|- ( 1st ` y ) e. _V |
369 |
368 354
|
opth |
|- ( <. ( 1st ` y ) , ( 2nd ` y ) >. = <. ( 1st ` x ) , ( 2nd ` x ) >. <-> ( ( 1st ` y ) = ( 1st ` x ) /\ ( 2nd ` y ) = ( 2nd ` x ) ) ) |
370 |
369
|
baib |
|- ( ( 1st ` y ) = ( 1st ` x ) -> ( <. ( 1st ` y ) , ( 2nd ` y ) >. = <. ( 1st ` x ) , ( 2nd ` x ) >. <-> ( 2nd ` y ) = ( 2nd ` x ) ) ) |
371 |
359 370
|
syl |
|- ( ( ( ph /\ x e. A ) /\ ( y e. ( A |` { ( 1st ` x ) } ) /\ y =/= x ) ) -> ( <. ( 1st ` y ) , ( 2nd ` y ) >. = <. ( 1st ` x ) , ( 2nd ` x ) >. <-> ( 2nd ` y ) = ( 2nd ` x ) ) ) |
372 |
367 371
|
bitrd |
|- ( ( ( ph /\ x e. A ) /\ ( y e. ( A |` { ( 1st ` x ) } ) /\ y =/= x ) ) -> ( y = x <-> ( 2nd ` y ) = ( 2nd ` x ) ) ) |
373 |
372
|
necon3bid |
|- ( ( ( ph /\ x e. A ) /\ ( y e. ( A |` { ( 1st ` x ) } ) /\ y =/= x ) ) -> ( y =/= x <-> ( 2nd ` y ) =/= ( 2nd ` x ) ) ) |
374 |
365 373
|
mpbid |
|- ( ( ( ph /\ x e. A ) /\ ( y e. ( A |` { ( 1st ` x ) } ) /\ y =/= x ) ) -> ( 2nd ` y ) =/= ( 2nd ` x ) ) |
375 |
|
eldifsn |
|- ( ( 2nd ` y ) e. ( ( A " { ( 1st ` x ) } ) \ { ( 2nd ` x ) } ) <-> ( ( 2nd ` y ) e. ( A " { ( 1st ` x ) } ) /\ ( 2nd ` y ) =/= ( 2nd ` x ) ) ) |
376 |
364 374 375
|
sylanbrc |
|- ( ( ( ph /\ x e. A ) /\ ( y e. ( A |` { ( 1st ` x ) } ) /\ y =/= x ) ) -> ( 2nd ` y ) e. ( ( A " { ( 1st ` x ) } ) \ { ( 2nd ` x ) } ) ) |
377 |
|
ovex |
|- ( ( 1st ` x ) S ( 2nd ` y ) ) e. _V |
378 |
|
difss |
|- ( ( A " { ( 1st ` x ) } ) \ { ( 2nd ` x ) } ) C_ ( A " { ( 1st ` x ) } ) |
379 |
|
resmpt |
|- ( ( ( A " { ( 1st ` x ) } ) \ { ( 2nd ` x ) } ) C_ ( A " { ( 1st ` x ) } ) -> ( ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) |` ( ( A " { ( 1st ` x ) } ) \ { ( 2nd ` x ) } ) ) = ( j e. ( ( A " { ( 1st ` x ) } ) \ { ( 2nd ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) |
380 |
378 379
|
ax-mp |
|- ( ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) |` ( ( A " { ( 1st ` x ) } ) \ { ( 2nd ` x ) } ) ) = ( j e. ( ( A " { ( 1st ` x ) } ) \ { ( 2nd ` x ) } ) |-> ( ( 1st ` x ) S j ) ) |
381 |
|
oveq2 |
|- ( j = ( 2nd ` y ) -> ( ( 1st ` x ) S j ) = ( ( 1st ` x ) S ( 2nd ` y ) ) ) |
382 |
380 381
|
elrnmpt1s |
|- ( ( ( 2nd ` y ) e. ( ( A " { ( 1st ` x ) } ) \ { ( 2nd ` x ) } ) /\ ( ( 1st ` x ) S ( 2nd ` y ) ) e. _V ) -> ( ( 1st ` x ) S ( 2nd ` y ) ) e. ran ( ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) |` ( ( A " { ( 1st ` x ) } ) \ { ( 2nd ` x ) } ) ) ) |
383 |
376 377 382
|
sylancl |
|- ( ( ( ph /\ x e. A ) /\ ( y e. ( A |` { ( 1st ` x ) } ) /\ y =/= x ) ) -> ( ( 1st ` x ) S ( 2nd ` y ) ) e. ran ( ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) |` ( ( A " { ( 1st ` x ) } ) \ { ( 2nd ` x ) } ) ) ) |
384 |
361 383
|
eqeltrd |
|- ( ( ( ph /\ x e. A ) /\ ( y e. ( A |` { ( 1st ` x ) } ) /\ y =/= x ) ) -> ( S ` y ) e. ran ( ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) |` ( ( A " { ( 1st ` x ) } ) \ { ( 2nd ` x ) } ) ) ) |
385 |
|
df-ima |
|- ( ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) " ( ( A " { ( 1st ` x ) } ) \ { ( 2nd ` x ) } ) ) = ran ( ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) |` ( ( A " { ( 1st ` x ) } ) \ { ( 2nd ` x ) } ) ) |
386 |
384 385
|
eleqtrrdi |
|- ( ( ( ph /\ x e. A ) /\ ( y e. ( A |` { ( 1st ` x ) } ) /\ y =/= x ) ) -> ( S ` y ) e. ( ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) " ( ( A " { ( 1st ` x ) } ) \ { ( 2nd ` x ) } ) ) ) |
387 |
386
|
ex |
|- ( ( ph /\ x e. A ) -> ( ( y e. ( A |` { ( 1st ` x ) } ) /\ y =/= x ) -> ( S ` y ) e. ( ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) " ( ( A " { ( 1st ` x ) } ) \ { ( 2nd ` x ) } ) ) ) ) |
388 |
346 387
|
syl5bi |
|- ( ( ph /\ x e. A ) -> ( y e. ( ( A |` { ( 1st ` x ) } ) \ { x } ) -> ( S ` y ) e. ( ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) " ( ( A " { ( 1st ` x ) } ) \ { ( 2nd ` x ) } ) ) ) ) |
389 |
388
|
ralrimiv |
|- ( ( ph /\ x e. A ) -> A. y e. ( ( A |` { ( 1st ` x ) } ) \ { x } ) ( S ` y ) e. ( ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) " ( ( A " { ( 1st ` x ) } ) \ { ( 2nd ` x ) } ) ) ) |
390 |
231 250
|
sstrid |
|- ( ( ph /\ x e. A ) -> ( ( A |` { ( 1st ` x ) } ) \ { x } ) C_ dom S ) |
391 |
|
funimass4 |
|- ( ( Fun S /\ ( ( A |` { ( 1st ` x ) } ) \ { x } ) C_ dom S ) -> ( ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) C_ ( ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) " ( ( A " { ( 1st ` x ) } ) \ { ( 2nd ` x ) } ) ) <-> A. y e. ( ( A |` { ( 1st ` x ) } ) \ { x } ) ( S ` y ) e. ( ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) " ( ( A " { ( 1st ` x ) } ) \ { ( 2nd ` x ) } ) ) ) ) |
392 |
246 390 391
|
syl2anc |
|- ( ( ph /\ x e. A ) -> ( ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) C_ ( ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) " ( ( A " { ( 1st ` x ) } ) \ { ( 2nd ` x ) } ) ) <-> A. y e. ( ( A |` { ( 1st ` x ) } ) \ { x } ) ( S ` y ) e. ( ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) " ( ( A " { ( 1st ` x ) } ) \ { ( 2nd ` x ) } ) ) ) ) |
393 |
389 392
|
mpbird |
|- ( ( ph /\ x e. A ) -> ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) C_ ( ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) " ( ( A " { ( 1st ` x ) } ) \ { ( 2nd ` x ) } ) ) ) |
394 |
393
|
unissd |
|- ( ( ph /\ x e. A ) -> U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) C_ U. ( ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) " ( ( A " { ( 1st ` x ) } ) \ { ( 2nd ` x ) } ) ) ) |
395 |
|
imassrn |
|- ( ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) " ( ( A " { ( 1st ` x ) } ) \ { ( 2nd ` x ) } ) ) C_ ran ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) |
396 |
395 267
|
sstrid |
|- ( ( ph /\ x e. A ) -> ( ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) " ( ( A " { ( 1st ` x ) } ) \ { ( 2nd ` x ) } ) ) C_ ~P ( Base ` G ) ) |
397 |
|
sspwuni |
|- ( ( ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) " ( ( A " { ( 1st ` x ) } ) \ { ( 2nd ` x ) } ) ) C_ ~P ( Base ` G ) <-> U. ( ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) " ( ( A " { ( 1st ` x ) } ) \ { ( 2nd ` x ) } ) ) C_ ( Base ` G ) ) |
398 |
396 397
|
sylib |
|- ( ( ph /\ x e. A ) -> U. ( ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) " ( ( A " { ( 1st ` x ) } ) \ { ( 2nd ` x ) } ) ) C_ ( Base ` G ) ) |
399 |
166 6 394 398
|
mrcssd |
|- ( ( ph /\ x e. A ) -> ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) C_ ( K ` U. ( ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) " ( ( A " { ( 1st ` x ) } ) \ { ( 2nd ` x ) } ) ) ) ) |
400 |
|
ss2in |
|- ( ( ( S ` x ) C_ ( ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ` ( 2nd ` x ) ) /\ ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) C_ ( K ` U. ( ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) " ( ( A " { ( 1st ` x ) } ) \ { ( 2nd ` x ) } ) ) ) ) -> ( ( S ` x ) i^i ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) ) C_ ( ( ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ` ( 2nd ` x ) ) i^i ( K ` U. ( ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) " ( ( A " { ( 1st ` x ) } ) \ { ( 2nd ` x ) } ) ) ) ) ) |
401 |
345 399 400
|
syl2anc |
|- ( ( ph /\ x e. A ) -> ( ( S ` x ) i^i ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) ) C_ ( ( ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ` ( 2nd ` x ) ) i^i ( K ` U. ( ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) " ( ( A " { ( 1st ` x ) } ) \ { ( 2nd ` x ) } ) ) ) ) ) |
402 |
58
|
a1i |
|- ( ( ph /\ x e. A ) -> dom ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) = ( A " { ( 1st ` x ) } ) ) |
403 |
53 402 69 8 6
|
dprddisj |
|- ( ( ph /\ x e. A ) -> ( ( ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ` ( 2nd ` x ) ) i^i ( K ` U. ( ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) " ( ( A " { ( 1st ` x ) } ) \ { ( 2nd ` x ) } ) ) ) ) = { ( 0g ` G ) } ) |
404 |
401 403
|
sseqtrd |
|- ( ( ph /\ x e. A ) -> ( ( S ` x ) i^i ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) ) C_ { ( 0g ` G ) } ) |
405 |
8
|
subg0cl |
|- ( ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) e. ( SubGrp ` G ) -> ( 0g ` G ) e. ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) ) |
406 |
222 405
|
syl |
|- ( ( ph /\ x e. A ) -> ( 0g ` G ) e. ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) ) |
407 |
333 406
|
elind |
|- ( ( ph /\ x e. A ) -> ( 0g ` G ) e. ( ( S ` x ) i^i ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) ) ) |
408 |
407
|
snssd |
|- ( ( ph /\ x e. A ) -> { ( 0g ` G ) } C_ ( ( S ` x ) i^i ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) ) ) |
409 |
404 408
|
eqssd |
|- ( ( ph /\ x e. A ) -> ( ( S ` x ) i^i ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) ) = { ( 0g ` G ) } ) |
410 |
340 409
|
eqtrid |
|- ( ( ph /\ x e. A ) -> ( ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) i^i ( S ` x ) ) = { ( 0g ` G ) } ) |
411 |
225 222 310 224 8 339 410
|
lsmdisj2 |
|- ( ( ph /\ x e. A ) -> ( ( S ` x ) i^i ( ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) ( LSSum ` G ) ( K ` U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) ) ) = { ( 0g ` G ) } ) |
412 |
309 411
|
sseqtrd |
|- ( ( ph /\ x e. A ) -> ( ( S ` x ) i^i ( K ` U. ( S " ( A \ { x } ) ) ) ) C_ { ( 0g ` G ) } ) |
413 |
7 8 6 10 41 2 162 412
|
dmdprdd |
|- ( ph -> G dom DProd S ) |