Step |
Hyp |
Ref |
Expression |
1 |
|
dprd2d.1 |
|- ( ph -> Rel A ) |
2 |
|
dprd2d.2 |
|- ( ph -> S : A --> ( SubGrp ` G ) ) |
3 |
|
dprd2d.3 |
|- ( ph -> dom A C_ I ) |
4 |
|
dprd2d.4 |
|- ( ( ph /\ i e. I ) -> G dom DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) |
5 |
|
dprd2d.5 |
|- ( ph -> G dom DProd ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ) |
6 |
|
dprd2d.k |
|- K = ( mrCls ` ( SubGrp ` G ) ) |
7 |
|
dprd2d.6 |
|- ( ph -> C C_ I ) |
8 |
|
dprdgrp |
|- ( G dom DProd ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) -> G e. Grp ) |
9 |
5 8
|
syl |
|- ( ph -> G e. Grp ) |
10 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
11 |
10
|
subgacs |
|- ( G e. Grp -> ( SubGrp ` G ) e. ( ACS ` ( Base ` G ) ) ) |
12 |
|
acsmre |
|- ( ( SubGrp ` G ) e. ( ACS ` ( Base ` G ) ) -> ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) ) |
13 |
9 11 12
|
3syl |
|- ( ph -> ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) ) |
14 |
|
ffun |
|- ( S : A --> ( SubGrp ` G ) -> Fun S ) |
15 |
|
funiunfv |
|- ( Fun S -> U_ x e. ( A |` C ) ( S ` x ) = U. ( S " ( A |` C ) ) ) |
16 |
2 14 15
|
3syl |
|- ( ph -> U_ x e. ( A |` C ) ( S ` x ) = U. ( S " ( A |` C ) ) ) |
17 |
|
resss |
|- ( A |` C ) C_ A |
18 |
17
|
sseli |
|- ( x e. ( A |` C ) -> x e. A ) |
19 |
1 2 3 4 5 6
|
dprd2dlem2 |
|- ( ( ph /\ x e. A ) -> ( S ` x ) C_ ( G DProd ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) ) |
20 |
18 19
|
sylan2 |
|- ( ( ph /\ x e. ( A |` C ) ) -> ( S ` x ) C_ ( G DProd ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) ) |
21 |
|
1st2nd |
|- ( ( Rel A /\ x e. A ) -> x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) |
22 |
1 18 21
|
syl2an |
|- ( ( ph /\ x e. ( A |` C ) ) -> x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) |
23 |
|
simpr |
|- ( ( ph /\ x e. ( A |` C ) ) -> x e. ( A |` C ) ) |
24 |
22 23
|
eqeltrrd |
|- ( ( ph /\ x e. ( A |` C ) ) -> <. ( 1st ` x ) , ( 2nd ` x ) >. e. ( A |` C ) ) |
25 |
|
fvex |
|- ( 2nd ` x ) e. _V |
26 |
25
|
opelresi |
|- ( <. ( 1st ` x ) , ( 2nd ` x ) >. e. ( A |` C ) <-> ( ( 1st ` x ) e. C /\ <. ( 1st ` x ) , ( 2nd ` x ) >. e. A ) ) |
27 |
26
|
simplbi |
|- ( <. ( 1st ` x ) , ( 2nd ` x ) >. e. ( A |` C ) -> ( 1st ` x ) e. C ) |
28 |
24 27
|
syl |
|- ( ( ph /\ x e. ( A |` C ) ) -> ( 1st ` x ) e. C ) |
29 |
|
ovex |
|- ( G DProd ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) e. _V |
30 |
|
eqid |
|- ( i e. C |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) = ( i e. C |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) |
31 |
|
sneq |
|- ( i = ( 1st ` x ) -> { i } = { ( 1st ` x ) } ) |
32 |
31
|
imaeq2d |
|- ( i = ( 1st ` x ) -> ( A " { i } ) = ( A " { ( 1st ` x ) } ) ) |
33 |
|
oveq1 |
|- ( i = ( 1st ` x ) -> ( i S j ) = ( ( 1st ` x ) S j ) ) |
34 |
32 33
|
mpteq12dv |
|- ( i = ( 1st ` x ) -> ( j e. ( A " { i } ) |-> ( i S j ) ) = ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) |
35 |
34
|
oveq2d |
|- ( i = ( 1st ` x ) -> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) = ( G DProd ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) ) |
36 |
30 35
|
elrnmpt1s |
|- ( ( ( 1st ` x ) e. C /\ ( G DProd ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) e. _V ) -> ( G DProd ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) e. ran ( i e. C |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ) |
37 |
28 29 36
|
sylancl |
|- ( ( ph /\ x e. ( A |` C ) ) -> ( G DProd ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) e. ran ( i e. C |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ) |
38 |
|
elssuni |
|- ( ( G DProd ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) e. ran ( i e. C |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) -> ( G DProd ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) C_ U. ran ( i e. C |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ) |
39 |
37 38
|
syl |
|- ( ( ph /\ x e. ( A |` C ) ) -> ( G DProd ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) C_ U. ran ( i e. C |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ) |
40 |
20 39
|
sstrd |
|- ( ( ph /\ x e. ( A |` C ) ) -> ( S ` x ) C_ U. ran ( i e. C |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ) |
41 |
40
|
ralrimiva |
|- ( ph -> A. x e. ( A |` C ) ( S ` x ) C_ U. ran ( i e. C |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ) |
42 |
|
iunss |
|- ( U_ x e. ( A |` C ) ( S ` x ) C_ U. ran ( i e. C |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) <-> A. x e. ( A |` C ) ( S ` x ) C_ U. ran ( i e. C |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ) |
43 |
41 42
|
sylibr |
|- ( ph -> U_ x e. ( A |` C ) ( S ` x ) C_ U. ran ( i e. C |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ) |
44 |
16 43
|
eqsstrrd |
|- ( ph -> U. ( S " ( A |` C ) ) C_ U. ran ( i e. C |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ) |
45 |
7
|
sselda |
|- ( ( ph /\ i e. C ) -> i e. I ) |
46 |
45 4
|
syldan |
|- ( ( ph /\ i e. C ) -> G dom DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) |
47 |
|
ovex |
|- ( i S j ) e. _V |
48 |
|
eqid |
|- ( j e. ( A " { i } ) |-> ( i S j ) ) = ( j e. ( A " { i } ) |-> ( i S j ) ) |
49 |
47 48
|
dmmpti |
|- dom ( j e. ( A " { i } ) |-> ( i S j ) ) = ( A " { i } ) |
50 |
49
|
a1i |
|- ( ( ph /\ i e. C ) -> dom ( j e. ( A " { i } ) |-> ( i S j ) ) = ( A " { i } ) ) |
51 |
|
imassrn |
|- ( S " ( A |` C ) ) C_ ran S |
52 |
2
|
frnd |
|- ( ph -> ran S C_ ( SubGrp ` G ) ) |
53 |
|
mresspw |
|- ( ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) -> ( SubGrp ` G ) C_ ~P ( Base ` G ) ) |
54 |
13 53
|
syl |
|- ( ph -> ( SubGrp ` G ) C_ ~P ( Base ` G ) ) |
55 |
52 54
|
sstrd |
|- ( ph -> ran S C_ ~P ( Base ` G ) ) |
56 |
51 55
|
sstrid |
|- ( ph -> ( S " ( A |` C ) ) C_ ~P ( Base ` G ) ) |
57 |
|
sspwuni |
|- ( ( S " ( A |` C ) ) C_ ~P ( Base ` G ) <-> U. ( S " ( A |` C ) ) C_ ( Base ` G ) ) |
58 |
56 57
|
sylib |
|- ( ph -> U. ( S " ( A |` C ) ) C_ ( Base ` G ) ) |
59 |
6
|
mrccl |
|- ( ( ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) /\ U. ( S " ( A |` C ) ) C_ ( Base ` G ) ) -> ( K ` U. ( S " ( A |` C ) ) ) e. ( SubGrp ` G ) ) |
60 |
13 58 59
|
syl2anc |
|- ( ph -> ( K ` U. ( S " ( A |` C ) ) ) e. ( SubGrp ` G ) ) |
61 |
60
|
adantr |
|- ( ( ph /\ i e. C ) -> ( K ` U. ( S " ( A |` C ) ) ) e. ( SubGrp ` G ) ) |
62 |
|
oveq2 |
|- ( j = k -> ( i S j ) = ( i S k ) ) |
63 |
62 48 47
|
fvmpt3i |
|- ( k e. ( A " { i } ) -> ( ( j e. ( A " { i } ) |-> ( i S j ) ) ` k ) = ( i S k ) ) |
64 |
63
|
adantl |
|- ( ( ( ph /\ i e. C ) /\ k e. ( A " { i } ) ) -> ( ( j e. ( A " { i } ) |-> ( i S j ) ) ` k ) = ( i S k ) ) |
65 |
|
df-ov |
|- ( i S k ) = ( S ` <. i , k >. ) |
66 |
2
|
ffnd |
|- ( ph -> S Fn A ) |
67 |
66
|
ad2antrr |
|- ( ( ( ph /\ i e. C ) /\ k e. ( A " { i } ) ) -> S Fn A ) |
68 |
17
|
a1i |
|- ( ( ( ph /\ i e. C ) /\ k e. ( A " { i } ) ) -> ( A |` C ) C_ A ) |
69 |
|
simplr |
|- ( ( ( ph /\ i e. C ) /\ k e. ( A " { i } ) ) -> i e. C ) |
70 |
|
elrelimasn |
|- ( Rel A -> ( k e. ( A " { i } ) <-> i A k ) ) |
71 |
1 70
|
syl |
|- ( ph -> ( k e. ( A " { i } ) <-> i A k ) ) |
72 |
71
|
adantr |
|- ( ( ph /\ i e. C ) -> ( k e. ( A " { i } ) <-> i A k ) ) |
73 |
72
|
biimpa |
|- ( ( ( ph /\ i e. C ) /\ k e. ( A " { i } ) ) -> i A k ) |
74 |
|
df-br |
|- ( i A k <-> <. i , k >. e. A ) |
75 |
73 74
|
sylib |
|- ( ( ( ph /\ i e. C ) /\ k e. ( A " { i } ) ) -> <. i , k >. e. A ) |
76 |
|
vex |
|- k e. _V |
77 |
76
|
opelresi |
|- ( <. i , k >. e. ( A |` C ) <-> ( i e. C /\ <. i , k >. e. A ) ) |
78 |
69 75 77
|
sylanbrc |
|- ( ( ( ph /\ i e. C ) /\ k e. ( A " { i } ) ) -> <. i , k >. e. ( A |` C ) ) |
79 |
|
fnfvima |
|- ( ( S Fn A /\ ( A |` C ) C_ A /\ <. i , k >. e. ( A |` C ) ) -> ( S ` <. i , k >. ) e. ( S " ( A |` C ) ) ) |
80 |
67 68 78 79
|
syl3anc |
|- ( ( ( ph /\ i e. C ) /\ k e. ( A " { i } ) ) -> ( S ` <. i , k >. ) e. ( S " ( A |` C ) ) ) |
81 |
65 80
|
eqeltrid |
|- ( ( ( ph /\ i e. C ) /\ k e. ( A " { i } ) ) -> ( i S k ) e. ( S " ( A |` C ) ) ) |
82 |
|
elssuni |
|- ( ( i S k ) e. ( S " ( A |` C ) ) -> ( i S k ) C_ U. ( S " ( A |` C ) ) ) |
83 |
81 82
|
syl |
|- ( ( ( ph /\ i e. C ) /\ k e. ( A " { i } ) ) -> ( i S k ) C_ U. ( S " ( A |` C ) ) ) |
84 |
13 6 58
|
mrcssidd |
|- ( ph -> U. ( S " ( A |` C ) ) C_ ( K ` U. ( S " ( A |` C ) ) ) ) |
85 |
84
|
ad2antrr |
|- ( ( ( ph /\ i e. C ) /\ k e. ( A " { i } ) ) -> U. ( S " ( A |` C ) ) C_ ( K ` U. ( S " ( A |` C ) ) ) ) |
86 |
83 85
|
sstrd |
|- ( ( ( ph /\ i e. C ) /\ k e. ( A " { i } ) ) -> ( i S k ) C_ ( K ` U. ( S " ( A |` C ) ) ) ) |
87 |
64 86
|
eqsstrd |
|- ( ( ( ph /\ i e. C ) /\ k e. ( A " { i } ) ) -> ( ( j e. ( A " { i } ) |-> ( i S j ) ) ` k ) C_ ( K ` U. ( S " ( A |` C ) ) ) ) |
88 |
46 50 61 87
|
dprdlub |
|- ( ( ph /\ i e. C ) -> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) C_ ( K ` U. ( S " ( A |` C ) ) ) ) |
89 |
|
ovex |
|- ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) e. _V |
90 |
89
|
elpw |
|- ( ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) e. ~P ( K ` U. ( S " ( A |` C ) ) ) <-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) C_ ( K ` U. ( S " ( A |` C ) ) ) ) |
91 |
88 90
|
sylibr |
|- ( ( ph /\ i e. C ) -> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) e. ~P ( K ` U. ( S " ( A |` C ) ) ) ) |
92 |
91
|
fmpttd |
|- ( ph -> ( i e. C |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) : C --> ~P ( K ` U. ( S " ( A |` C ) ) ) ) |
93 |
92
|
frnd |
|- ( ph -> ran ( i e. C |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) C_ ~P ( K ` U. ( S " ( A |` C ) ) ) ) |
94 |
|
sspwuni |
|- ( ran ( i e. C |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) C_ ~P ( K ` U. ( S " ( A |` C ) ) ) <-> U. ran ( i e. C |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) C_ ( K ` U. ( S " ( A |` C ) ) ) ) |
95 |
93 94
|
sylib |
|- ( ph -> U. ran ( i e. C |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) C_ ( K ` U. ( S " ( A |` C ) ) ) ) |
96 |
13 6
|
mrcssvd |
|- ( ph -> ( K ` U. ( S " ( A |` C ) ) ) C_ ( Base ` G ) ) |
97 |
95 96
|
sstrd |
|- ( ph -> U. ran ( i e. C |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) C_ ( Base ` G ) ) |
98 |
13 6 44 97
|
mrcssd |
|- ( ph -> ( K ` U. ( S " ( A |` C ) ) ) C_ ( K ` U. ran ( i e. C |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ) ) |
99 |
6
|
mrcsscl |
|- ( ( ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) /\ U. ran ( i e. C |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) C_ ( K ` U. ( S " ( A |` C ) ) ) /\ ( K ` U. ( S " ( A |` C ) ) ) e. ( SubGrp ` G ) ) -> ( K ` U. ran ( i e. C |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ) C_ ( K ` U. ( S " ( A |` C ) ) ) ) |
100 |
13 95 60 99
|
syl3anc |
|- ( ph -> ( K ` U. ran ( i e. C |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ) C_ ( K ` U. ( S " ( A |` C ) ) ) ) |
101 |
98 100
|
eqssd |
|- ( ph -> ( K ` U. ( S " ( A |` C ) ) ) = ( K ` U. ran ( i e. C |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ) ) |
102 |
|
eqid |
|- ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) = ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) |
103 |
89 102
|
dmmpti |
|- dom ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) = I |
104 |
103
|
a1i |
|- ( ph -> dom ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) = I ) |
105 |
5 104 7
|
dprdres |
|- ( ph -> ( G dom DProd ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) |` C ) /\ ( G DProd ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) |` C ) ) C_ ( G DProd ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ) ) ) |
106 |
105
|
simpld |
|- ( ph -> G dom DProd ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) |` C ) ) |
107 |
7
|
resmptd |
|- ( ph -> ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) |` C ) = ( i e. C |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ) |
108 |
106 107
|
breqtrd |
|- ( ph -> G dom DProd ( i e. C |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ) |
109 |
6
|
dprdspan |
|- ( G dom DProd ( i e. C |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) -> ( G DProd ( i e. C |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ) = ( K ` U. ran ( i e. C |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ) ) |
110 |
108 109
|
syl |
|- ( ph -> ( G DProd ( i e. C |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ) = ( K ` U. ran ( i e. C |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ) ) |
111 |
101 110
|
eqtr4d |
|- ( ph -> ( K ` U. ( S " ( A |` C ) ) ) = ( G DProd ( i e. C |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ) ) |